
Symbian Academy Training Exercises

02: Leaves and the Cleanup Stack

 1

02: Leaves and the Cleanup Stack

Exercise Instructions

Goal
This module provides a hands-on experience with leaves and various ways on how the Cleanup Stack

can help with handling risky memory situations.

Introduction
Symbian OS has its own mechanisms for handling memory. Especially preventing memory leaks is

one of the most important aspects of development for mobile phones, where memory is scarce and

phones are expected to run for several weeks without a reboot. While the concepts of Leaves, Traps

and the Cleanup Stack might look difficult at first, they give you maximum control over memory

handling and allow you to effectively prevent errors in your application.

Structure of this Exercise
The entry point of the application is the E32Main()-function, which will catch and output any errors

(= leaves) that the code might produce. Also, it checks the heap state of the application to check for

memory states. See the detailed descriptions for an explanation of the expected output. No changes

have to be made here.

Two very simple classes have been defined:

- CLeaveClass: A prototype C based class (without two phase construction) that includes a

function (InitializeL()) that intentionally causes a leave.

- RCleanupTest: This class just has a constructor and a Close()-function and will be used to

test the cleanup stack-behavior for R type classes.

The tasks are split up into several sections:

- The Framework: This part includes very few edits. You should get to know how the pre-made

application framework handles leaves and memory leaks and take a look at how these are

caught and displayed.

- Experiments with Leaves and the Cleanup Stack: In the main section of this exercise, you

have to create an instance of a class and see in which situations a memory leak can occur and

how you can prevent them.

- Cleanup Stack for R classes: In real-life applications, you will use R type classes quite often.

This section shows how to correctly handle the resources in combination with the cleanup

stack.

The final output should look like this:

Symbian Academy Training Exercises

02: Leaves and the Cleanup Stack

 2

Detailed Descriptions

The Framework
The framework of this exercise includes two important tests, which are executed directly in the

E32Main()-function:

- Leaves: First, it traps any leaves that might go through from the MainL()-function and

displays the error code.

- Memory Leaks: Secondly, it checks the state of the heap memory before and after MainL() is

executed. If a memory leak has occurred, the __UHEAP_MARKEND macro will raise a Panic. The

S60 and UIQ UI-frameworks would handle this and display an error message. However, the

console view doesn’t do this, as there is no layer above our application. If a memory leak

occurs, the application exits when the Panic is raised by the macro.

Therefore, the sample application requires pressing the space key twice:

o The first time after execution of the MainL()-function, so that you can see its output

and any leaves that might have been caught in any case.

o The second time after the heap check macro. If you don’t get to this point and the

emulator closes down before you see the second message, you will know that there

is a memory leak in your application.

The output of the framework with no memory leaks should look like this:

The edits in the first section of MainL() allow you to see how the TRAP in E32Main() reacts to a leave

and also demonstrates that the __UHEAP_MARK macro can make you aware of memory leaks in your

application.

Experiments with Leaves and the Cleanup Stack
Please take extra care of the order of the steps – the edits are not in sequential order in this part!

Symbian Academy Training Exercises

02: Leaves and the Cleanup Stack

 3

Through the edits, you will experience how memory leaks can occur and how they can be prevented

in a step-by-step introduction. After instantiating an object of CLeaveClass, you will first see that the

new (ELeave)-operator causes a leave right when there is a problem with memory allocation,

instead of having you check the allocation every time.

The next demonstration shows what happens when a leave occurs before the delete-statement is

reached. The cleanup stack is a countermeasure against such a situation.

Remember that instance variables of objects have to be handled differently and don’t have to be put

on the cleanup stack, as they will be deleted by the destructor of the class and must not be deleted

twice.

Cleanup Stack for R classes
This part shows how the CleanupClosePushL()-function works. It will automatically call the

Close()-function of the R class object when the object is deleted – either because of a leave or

through the normal CleanupStack::PopAndDestroy()-function.

This is very important as you will encounter R classes quite often in real-world applications – be it the

RFs (file server) or parts of the multimedia framework.

