
Symbian Academy Training Exercises

05: Dynamic Arrays

 1

05: Dynamic Arrays

Tutorial

Please note: This is the second part of the exercise for the “Dynamic Arrays”-module. Please start

with the exercise instructions!

Objective
Rewrite the TStudent-based dynamic array example:

- Use a CBase-derived class (CStudent) instead of TStudent

- Store the student name in an RBuf instead of a TBuf

- Use an RPointerArray instead of the RArray

Organize the project
(Optional) In the TStudent reference project, the class is fully contained in the DynamicArrays.cpp-

file. To keep things organized and concise, you should probably give this class its own source- and

header-files (Student.cpp, Student.h).

Array operations
Note that the RPointerArray doesn’t support sorting elements based on a key (TInt/TUint member

variable, _FOFF-macro). You can remove those parts from the TStudent reference project. The only

remaining operations are:

- Adding elements

- Sorting using TLinearOrder

- Find an element using TIdentityRelation

CBase
Remember that all C-type classes have to derive from CBase, otherwise the Cleanup stack cannot

correctly handle them. When renaming the class, don’t forget to change all references of TStudent

to CStudent. As you will now store pointers in the array, remember that accessing elements will now

work with “->” instead of “.”

Deleting the RPointerArray
As our RPointerArray will own the CStudent-objects we pass to it, we have to take care of deleting

those when deleting the array. The CleanupClosePushL()-call suffices to delete an RArray in case of

a leave and when calling CleanupStack::PopAndDestroy(), as it calls students.Close().

Symbian Academy Training Exercises

05: Dynamic Arrays

 2

However, to delete the objects owned by the array as well, you have to call

students.ResetAndDestroy(). For some reasons, the corresponding cleanup stack-function is

defined in:

#include <mmf/common/mmfcontrollerpluginresolver.h>

When including this, you can use CleanupResetAndDestroyPushL(students) – which will correctly

call students.ResetAndDestroy() instead of students.Close().

RBuf
In contrast to the TBuf, the RBuf is heap-based and has to be freed when the object instance is

deleted. This is done by calling Close() in the destructor of the CStudent-class. Also, the TBuf had a

fixed size that wasted memory in most cases, whereas the RBuf can be created based on the source

descriptor (CreateL()) and will only require as much memory as required.

Two-Phased Construction
Allocating heap-memory through the RBuf-object can leave, therefore you should not do this in the

constructor. Implement a two-phase construction instead. The standard C++ constructor is now only

used to assign the TInt-variables, whereas creating the RBuf should be done in ConstructL(). To

make constructing the objects easier, implement NewL() and NewLC().

Cleanup Stack – Elements
Take care of the cleanup stack when appending elements to the array!

The call to students.AppendL() can leave, as indicated by the trailing “L”. Therefore, make sure the

new student object is on the cleanup stack before you add it to the array (NewLC()). Pop (without

…AndDestroy!) it from the cleanup stack after appending it, as the ownership has been transferred

to the array.

Finding an element (students.Find()) cannot leave, therefore you don’t have to put the reference

object on the cleanup stack. Here, you can use NewL() and delete it with delete, instead of using the

cleanup stack to delete it.

Symbian Academy Training Exercises

05: Dynamic Arrays

 3

Testing
The final output should look somewhat like this:

Now, try to fail individual memory allocations by adding __UHEAP_FAILNEXT(1); before them. If your

application does not cause any memory leaks, you succeeded!

