
Symbian Academy Training Exercises

03: Two-Phase Construction and Object Destruction

 1

03: Two-Phase Construction and Object
Destruction

Tutorial

Goal
In this module, you will see how two-phase construction works in Symbian OS and what can happen

if you do not implement it correctly.

Introduction
Every application you will write for Symbian OS will use own or pre-written C type classes. Usually,

these will require two phased construction, so it’s important that you know how this works and how

it is correctly implemented.

Structure of this Exercise
In this exercise, you will start with a nearly empty framework. It’s based on the same framework as

the last module (Leaves and the Cleanup Stack), so it should be familiar to you.

An incomplete definition of a C type class has been added at the beginning of the code. The class is

called CShopEntry. Only one function is pre-written: PrintEntry(), which outputs the two instance

variables to the console. Those two variables (iName and iPrice) contain the code. iName is a heap

based descriptor (RBuf) which is owned by the class.

To complete this module, you have to work through this document and complete the described

tasks. You will first create a standard constructor and destructor and then see in a step by step

process why this is not sufficient in this case – and which mechanisms are proposed by Symbian OS

to write a totally memory leak free code.

Note that we will not do everything in the correct way right from the beginning – this is to explain

and to experience hands-on what happens if common errors are made and why the approach was

wrong.

Tutorial Tasks

Preparations
Open the sample framework (project “Construction”) in Carbide.c++. Our goal is to create a class

called CShopEntry, which can store the name of an item as well as its price.

Some parts of the class have already been pre-written. This includes the

CShopEntry::PrintEntry()-function, which just prints a line to the console containing the name of

the article as well as its price.

Symbian Academy Training Exercises

03: Two-Phase Construction and Object Destruction

 2

Those two variables have already been declared as private instance variables called iName (of type

RBuf, more on that in the Descriptors-module) and iPrice (of type TInt).

At the beginning, the (incomplete) definition of the class looks like this:

class CShopEntry

 {

public:

 // Constructors & Destructors

private:

 // Private construction code

public:

 // Public functions

 void PrintEntry();

private:

 // Private instance variables

 RBuf iName;

 TInt iPrice;

 };

You will already know the structure of the code in PrintEntry() from previous modules. Note that

the formatting process of the text inserts the text at a position that is marked with %S.

void CShopEntry::PrintEntry()

 {

 _LIT(KShopEntry, "Item: %S, Price: %d\n");

 console->Printf (KShopEntry, &iName, iPrice);

 }

Constructor
The first thing that is needed to actually use the CShopEntry class is to add a constructor and a

destructor. Define them in the first public section of the CShopEntry class definition. We will pass the

name of the item and the price to the class right in the constructor.

class CShopEntry

 {

public:

 // Constructors & Destructors

 CShopEntry(const TDesC& aName, TInt aPrice);

 ~CShopEntry();

Note that the name is passed as const TDesC&, which is essentially a reference to any type of string,

no matter if it’s heap-, stack- or ROM-based. Descriptors will be covered in detail in the according

module.

Also make sure that you get the naming conventions right. Parameters should have a preceding a,

while instance variables are marked with an i. This makes it easier to differentiate those two, helps

preventing errors and understanding the source code better.

Symbian Academy Training Exercises

03: Two-Phase Construction and Object Destruction

 3

The next task is to actually implement those two functions:

CShopEntry::CShopEntry(const TDesC& aName, TInt aPrice) :

 iPrice(aPrice)

 {

 iName.CreateL (aName);

 }

For the TInt parameter of the constructor, the class is already initialized with the parameter

(aPrice) during its initialization. In the actual source code of the constructor, the iName descriptor is

allocated; it copies the text to the heap memory that is automatically reserved an managed by the

RBuf.

The destructor has to clean up the memory that is owned by the class instance. As we know, R type

classes have to be closed, to make them free their memory / close their connections. Therefore, we

call iName.Close() to free the memory allocated by the descriptor:

CShopEntry::~CShopEntry()

 {

 iName.Close ();

 }

The code will generally work fine, but it is not safe – we will shortly see why. First, we need some

testing code. Add this to the MainL()-function at the end of the file:

 CShopEntry* entry1 = new (ELeave) CShopEntry(KEntry1, 600);

 entry1->PrintEntry();

 delete entry1;

The code works fine and you should see the following output when you run the application:

Memory Leaks
It’s ok that we didn’t put the test instance (entry1) on the cleanup stack, as no function could cause

a leave until the class is deleted again. However, we will now assume that the code between

construction and destruction of the object could potentially cause a leave, forcing us to put the

object on the cleanup stack.

The new code is therefore:

 CShopEntry* entry1 = new (ELeave) CShopEntry(KEntry1, 600);

 CleanupStack::PushL(entry1);

 entry1->PrintEntry();

 CleanupStack::PopAndDestroy(entry1);

The code would be fine – however, if you execute the application now, you will notice that there’s a

memory leak. If you use a debug run configuration, the application will quit. In release mode, you will

Symbian Academy Training Exercises

03: Two-Phase Construction and Object Destruction

 4

get a serious Windows error message, which reports that Construction.exe has caused an error and

has to be shut down. In any case, you won’t see the debug message telling you about no memory

leaks that is still part of the framework.

The memory leak can only be caused by our entry1 object, which is not properly cleaned up by the

cleanup stack. The reason is that the class is not derived from CBase, so the cleanup stack doesn’t

know that it should call the destructor of the class when cleaning up. Fix this mistake and the cleanup

stack will work!

In case you’re wondering – it would also be possible to push the object onto the cleanup stack

through CleanupDeletePushL(entry1);. This would tell the cleanup stack to call delete entry1

even if it isn’t derived from CBase. However, as our object is indeed a C type class, it should be

derived from CBase in any case!

Safe Construction
The current code has another problem. To reveal it, modify the constructor of the CShopEntry-class

to simulate a memory allocation error for the descriptor using the __UHEAP_FAILNEXT(1); macro:

CShopEntry::CShopEntry(const TDesC& aName, TInt aPrice) :

 iPrice(aPrice)

 {

 __UHEAP_FAILNEXT(1);

 iName.CreateL (aName);

 }

When you execute the application now, you will notice a memory leak again. The reason is that the

object itself has already been allocated in memory at the time when the code inside of the

constructor (iName.CreateL()) leaves. Because of this, the constructor is left immediately and

the memory allocated for the object is orphaned.

Therefore, no code within a C++ constructor should ever leave. This is not only true for memory

allocations, but also for any other applications that could cause a leave – for example, opening a file.

Two Phase Construction
This leads us to the two phase construction scheme of Symbian OS. It splits the constructor into two

phases:

- Constructor: The first phase is the normal constructor, which can still be used to assign

arguments to instance variables, invoke functions that cannot leave, etc.

- Initialization: The second phase is usually a class method called ConstructL(). It completes

the construction of the object and may perform operations that can leave.

The idea is that object construction is only complete when both phases are completed. Therefore,

the instance of the object shouldn’t exist when the constructor was executed but initialization fails.

Symbian Academy Training Exercises

03: Two-Phase Construction and Object Destruction

 5

We’ll now adapt our application to use two phase construction:

1. Add the ConstructL() function to the CShopEntry class definition (public, for now) and

adapt the parameter of the constructor so that it only requires the price.

class CShopEntry : public CBase

 {

public:

 // Constructors & Destructors

 CShopEntry(TInt aPrice);

 ~CShopEntry();

 void ConstructL(const TDesC& aName);

2. Implement ConstructL() and move the aName parameter plus the iName initialization from

the constructor to the new ConstructL() function.

CShopEntry::CShopEntry(TInt aPrice) :

 iPrice(aPrice)

 {

 }

void CShopEntry::ConstructL(const TDesC& aName)

 {

 //__UHEAP_FAILNEXT(1);

 iName.CreateL (aName);

 }

3. Adapt the test code to push the object onto the cleanup stack after the constructor has

successfully completed and then immediately call ConstructL().

 CShopEntry* entry1 = new (ELeave) CShopEntry(600);

 CleanupStack::PushL(entry1);

 entry1->ConstructL(KEntry1);

 entry1->PrintEntry();

 CleanupStack::PopAndDestroy(entry1);

If you activate the __UHEAP_FAILNEXT(1)-macro in the ConstructL()-function, the leave will of

course still be sent out as the allocation of iName fails. The framework therefore displays the

according error message. The great thing is that the memory leak is gone – so, even though memory

allocation during object construction failed, our code is still safe from memory leaks. After you’re

finished with testing, remove the macro again.

NewL and NewLC
Of course, it’s not really convenient to call ConstructL() every time you want to create an instance

of an object. Also, it might lead to errors if you provide your code to someone else and he/she

forgets to do the two phase construction manually.

Symbian Academy Training Exercises

03: Two-Phase Construction and Object Destruction

 6

Because of this, classes that require two phase construction (e.g. they allocate memory during their

construction) usually provide comfort functions called NewL() and NewLC(). Those functions

encapsulate the whole object creation process. The difference is that NewLC() leaves the object on

the cleanup stack, which is important if you plan to use it as a local variable. NewL() is mainly

intended for instance variables, where the object is not left on the cleanup stack.

To implement those two methods, you should make the standard C++ constructor and ConstructL()

private, so that the caller can no longer instantiate objects except through NewL(C).

Both NewL() and NewLC() are static functions that return an instance of the class. Their definition

reflects this behaviour; the top part of the class definition should therefore look like this:

class CShopEntry : public CBase

 {

public:

 // Constructors & Destructors

 static CShopEntry* NewLC(const TDesC& aName, TInt aPrice);

 static CShopEntry* NewL(const TDesC& aName, TInt aPrice);

 ~CShopEntry();

private:

 // Private construction code

 CShopEntry(TInt aPrice);

 void ConstructL(const TDesC& aName);

The implementation of NewLC() is exactly like the manual object construction that we have done in

the test code up to now. It first calls the constructor of the object, pushes it onto the cleanup stack

and calls ConstructL(). Finally, the fully created instance is returned to the caller. The object is left

on the cleanup stack, as is also indicated by the trailing C of the function name.

CShopEntry* CShopEntry::NewLC(const TDesC& aName, TInt aPrice)

 {

 CShopEntry* self = new (ELeave) CShopEntry(aPrice);

 CleanupStack::PushL (self);

 self->ConstructL (aName);

 return self;

 }

As the only difference between NewL() and NewLC() is whether the new instance of the object is left

on the cleanup stack, their code is rather similar. Therefore, NewL() will use the same code as

NewLC() and just pops the object from the cleanup stack after construction – without destroying it!

CShopEntry* CShopEntry::NewL(const TDesC& aName, TInt aPrice)

 {

 CShopEntry* self = CShopEntry::NewLC (aName, aPrice);

 CleanupStack::Pop (self);

 return self;

 }

As the constructor is now private, we have to adapt the test code to use NewLC() instead. The

construction code gets a lot shorter and easier:

 CShopEntry* entry1 = CShopEntry::NewLC(KEntry1, 600);

 entry1->PrintEntry();

 CleanupStack::PopAndDestroy (entry1);

Symbian Academy Training Exercises

03: Two-Phase Construction and Object Destruction

 7

The good thing is that the code stays safe even if the first object construction of the following

updated test code succeeds, but the second produces an error:

 CShopEntry* entry1 = CShopEntry::NewLC(KEntry1, 600);

 __UHEAP_FAILNEXT(1);

 CShopEntry* entry2 = CShopEntry::NewLC(KEntry2, 450);

 entry1->PrintEntry();

 entry2->PrintEntry();

 CleanupStack::PopAndDestroy(2);

The result is still a memory leak safe code:

If we’d create the entry as an instance variable or if there is no potentially leaving code between the

object construction and destruction, you can also use the NewL() function.

If your final test code looks like this...

 CShopEntry* entry1 = CShopEntry::NewLC(KEntry1, 600);

 CShopEntry* entry2 = CShopEntry::NewLC(KEntry2, 450);

 entry1->PrintEntry();

 entry2->PrintEntry();

 CleanupStack::PopAndDestroy(2);

 CShopEntry* entry3 = CShopEntry::NewL(KEntry3, 300);

 entry3->PrintEntry();

 delete entry3;

... the output should be like this:

Symbian Academy Training Exercises

03: Two-Phase Construction and Object Destruction

 8

Glossary
You might encounter the following definitions, which will not be familiar to you as of now. The

following table lists them, along with a short description:

Term Description

RBuf One of the Symbian OS descriptors, available since Symbian OS 8. Descriptors

are the Symbian OS way of C++ strings.

_LIT Defines a literal = a fixed descriptor (string) that’s stored directly in the

compiled application.

TDesC Base class for descriptors (= strings). Allows generic parameters, independent

on the real type of the descriptor.

