
1

IceIce

Threads and Concurrency with C++

2

Threads and Concurrency with C++Threads and Concurrency with C++

● The Ice threading library provides the following thread-
related abstractions:
● mutexes
● recursive mutexes
● read-write recursive mutexes
● monitors
● a thread abstraction that allows you to create, control, and

destroy threads

3

MutexesMutexes
● The classes IceUtil::Mutex (IceUtil/Mutex.h) IceUtil::StaticMutex

(IceUtil/StaticMutex.h) provide simple non-recursive mutual exclusion
mechanisms

namespace IceUtil {
class Mutex {
 public:
 Mutex();
 ~Mutex();
 void lock() const;
 bool tryLock() const;
 void unlock() const;
 typedef LockT<Mutex> Lock;
 typedef TryLockT<Mutex> TryLock;
};
struct StaticMutex {
 void lock() const;
 bool tryLock() const;
 void unlock() const;
 typedef LockT<StaticMutex> Lock;
 typedef TryLockT<StaticMutex> TryLock;
 };
}

namespace IceUtil {
class Mutex {
 public:
 Mutex();
 ~Mutex();
 void lock() const;
 bool tryLock() const;
 void unlock() const;
 typedef LockT<Mutex> Lock;
 typedef TryLockT<Mutex> TryLock;
};
struct StaticMutex {
 void lock() const;
 bool tryLock() const;
 void unlock() const;
 typedef LockT<StaticMutex> Lock;
 typedef TryLockT<StaticMutex> TryLock;
 };
}

4

MutexesMutexes

● IceUtil::StaticMutex is implemented as a simple data structure, so that
instances can be declared statically and initialized during compilation:
● static IceUtil::StaticMutex myStaticMutex =
ICE_STATIC_MUTEX_INITIALIZER;

● Instances of IceUtil::StaticMutex are never destroyed.
● IceUtil::Mutex is implemented as a class and initialized by its constructor and

destroyed by its destructor.
● IceUtil::Mutex and IceUtil::StaticMutex are non-recursive mutex

implementations.
● Do not call lock on the same mutex more than once from a thread. The mutex is

not recursive so, if the owner of a mutex attempts to lock it a second time, the
behavior is undefined.

● Do not call unlock on a mutex unless the calling thread holds the lock. Calling
unlock on a mutex that is not currently held by any thread, or calling unlock on a
mutex that is held by a different thread, results in undefined behavior.

5

Thread-Safe File Access for the Filesystem ApplicationThread-Safe File Access for the Filesystem Application
#include <IceUtil/Mutex.h>
// ...
namespace Filesystem {
 // ...
 class FileI : virtual public File,
 virtual public Filesystem::NodeI {
 public:
 // As before...
 private:
 Lines _lines;
 IceUtil::Mutex _fileMutex;
 };
 // ...
}
Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
 _fileMutex.lock();
 Lines l = _lines;
 _fileMutex.unlock();
 return l;
}
void
Filesystem::FileI::write(const Filesystem::Lines& text,
 const Ice::Current&)
{
 _fileMutex.lock();
 _lines = text;
 _fileMutex.unlock();
}

#include <IceUtil/Mutex.h>
// ...
namespace Filesystem {
 // ...
 class FileI : virtual public File,
 virtual public Filesystem::NodeI {
 public:
 // As before...
 private:
 Lines _lines;
 IceUtil::Mutex _fileMutex;
 };
 // ...
}
Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
 _fileMutex.lock();
 Lines l = _lines;
 _fileMutex.unlock();
 return l;
}
void
Filesystem::FileI::write(const Filesystem::Lines& text,
 const Ice::Current&)
{
 _fileMutex.lock();
 _lines = text;
 _fileMutex.unlock();
}

6

Guaranteed Unlocking of MutexesGuaranteed Unlocking of Mutexes

Filesystem::Lines
Filesystem::File::read(const Ice::Current&) const
{
 _fileMutex.lock(); // Lock the mutex
 Lines l = readFileContents(); // Read from database
 // Can throw exception
 _fileMutex.unlock(); // Unlock the mutex
 return l;
}
void
SomeClass::someFunction(/* params here... */)
{
 _mutex.lock(); // Lock a mutex
 // Lots of complex code here...
 if (someCondition) {
 // More complex code here...
 return; // Oops!!!
 }
 // More code here...
 _mutex.unlock(); // Unlock the mutex
}

Filesystem::Lines
Filesystem::File::read(const Ice::Current&) const
{
 _fileMutex.lock(); // Lock the mutex
 Lines l = readFileContents(); // Read from database
 // Can throw exception
 _fileMutex.unlock(); // Unlock the mutex
 return l;
}
void
SomeClass::someFunction(/* params here... */)
{
 _mutex.lock(); // Lock a mutex
 // Lots of complex code here...
 if (someCondition) {
 // More complex code here...
 return; // Oops!!!
 }
 // More code here...
 _mutex.unlock(); // Unlock the mutex
}

● Using the raw lock and unlock operations on mutexes has
an inherent problem: if you forget to unlock a mutex, your
program will deadlock. Forgetting to unlock a mutex is
easier than you might suspect:

7

Guaranteed Unlocking of MutexesGuaranteed Unlocking of Mutexes

namespace IceUtil {
 class Mutex {
 // ...
 typedef LockT<Mutex> Lock;
 typedef TryLockT<Mutex> TryLock;
 };
}

namespace IceUtil {
 class Mutex {
 // ...
 typedef LockT<Mutex> Lock;
 typedef TryLockT<Mutex> TryLock;
 };
}

● In these examples the early return from the middle of the function leaves the mutex
locked.

● Even though the examples makes the problem quite obvious, in large and complex
pieces of code, both exceptions and early returns can cause hard-to-track deadlock
problems.

● To avoid this, the Mutex class contains two type definitions for helper classes,
called Lock and TryLock:

● LockT and TryLockT are simple templates that primarily consist of a constructor
and a destructor
● the LockT constructor calls lock on its argument,
● the TryLockT constructor calls tryLock on its argument.
● The destructors call unlock if the mutex is lock when the template goes out of scope.
● By instantiating a local variable of type Lock or TryLock, we can avoid the deadlock

problem entirely
● This is an example of the RAII (Resource Acquisition Is Initialization) idiom

8

Guaranteed Unlocking of MutexesGuaranteed Unlocking of Mutexes

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
 IceUtil::Mutex::Lock lock(_fileMutex);
 return _lines;
}
void
Filesystem::FileI::write(const Filesystem::Lines& text,
 const Ice::Current&)
{
 IceUtil::Mutex::Lock lock(_fileMutex);
 _lines = text;
}

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
 IceUtil::Mutex::Lock lock(_fileMutex);
 return _lines;
}
void
Filesystem::FileI::write(const Filesystem::Lines& text,
 const Ice::Current&)
{
 IceUtil::Mutex::Lock lock(_fileMutex);
 _lines = text;
}

● Using the Lock helper, we can rewrite the implementation of our read and
write operations as follows:

● This also eliminates the need to make a copy of the _lines data member
● The return value is initialized under protection of the mutex and cannot be

modified by another thread once the destructor of lock unlocks the mutex.

9

Guaranteed Unlocking of MutexesGuaranteed Unlocking of Mutexes

● Both the Lock and TryLock templates have a few member functions:
● void acquire() const;

● This function attempts to acquire the lock and blocks the calling thread until the lock
becomes available.

● If the caller calls acquire on a mutex it has locked previously, the function throws
ThreadLockedException.

● bool tryAcquire() const;
● This function attempts to acquire the mutex.
● If the mutex can be acquired, it returns true with the mutex locked; if the mutex cannot

be acquired, it returns false. If the caller calls tryAcquire on a mutex it has locked
previously, the function throws ThreadLockedException.

● void release() const;
● This function releases a previously locked mutex.
● If the caller calls release on a mutex it has unlocked previously, the function throws
ThreadLockedException.

● bool acquired() const;
● This function returns true if the caller has locked the mutex previously and false,

otherwise.
● If you use the TryLock template, you must call acquired after instantiating the template

to test whether the lock actually was acquired.

10

Recursive MutexesRecursive Mutexes
● A non-recursive mutex cannot be locked more than once, even by the thread

that holds the lock.
● This frequently becomes a problem if a program contains a number of

functions, each of which must acquire a mutex, and you want to call one
function as part of the implementation of another function:

● f1 and f2 each correctly lock the mutex before manipulating data but f2
calls f1.
● At that point, the program deadlocks because f2 already holds the lock

that f1 is trying to acquire.

IceUtil::Mutex _mutex;
void f1()
{
 IceUtil::Mutex::Lock lock(_mutex);
 // ...
}
void f2()
{
 IceUtil::Mutex::Lock lock(_mutex);
 // Some code here...
 // Call f1 as a helper function
 f1(); // Deadlock!
 // More code here...
}

IceUtil::Mutex _mutex;
void f1()
{
 IceUtil::Mutex::Lock lock(_mutex);
 // ...
}
void f2()
{
 IceUtil::Mutex::Lock lock(_mutex);
 // Some code here...
 // Call f1 as a helper function
 f1(); // Deadlock!
 // More code here...
}

11

Recursive MutexesRecursive Mutexes

● For this simple example, the problem is obvious.
● In complex systems with many functions that acquire and

release locks, it can get very difficult to track down this
kind of situation:
● The locking conventions are not manifest anywhere but

in the source code
● Each caller must know which locks to acquire (or not to

acquire) before calling a function.
● The resulting complexity can quickly get out of hand.

12

Recursive MutexesRecursive Mutexes
● Ice provides a recursive mutex class RecMutex (IceUtil/RecMutex.h) that avoids this

problem:

● The signatures of the operations are the same as for IceUtil::Mutex.
● However, RecMutex implements a recursive mutex:

● lock
● The lock function attempts to acquire the mutex. If the mutex is already locked by

another thread, it suspends the calling thread until the mutex becomes available. If
the mutex is available or is already locked by the calling thread, the call returns
immediately with the mutex locked.

● tryLock
● The tryLock function works like lock, but, instead of blocking the caller, it returns

false if the mutex is locked by another thread. Otherwise, the return value is true.
● unlock

● The unlock function unlocks the mutex.

namespace IceUtil {
 class RecMutex {
 public:
 void lock() const;
 bool tryLock() const;
 void unlock() const;
 typedef LockT<RecMutex> Lock;
 typedef TryLockT<RecMutex> TryLock;
 };
}

namespace IceUtil {
 class RecMutex {
 public:
 void lock() const;
 bool tryLock() const;
 void unlock() const;
 typedef LockT<RecMutex> Lock;
 typedef TryLockT<RecMutex> TryLock;
 };
}

13

Recursive MutexesRecursive Mutexes
● As for non-recursive mutexes, you must adhere to a few simple rules for

recursive mutexes:
● Do not call unlock on a mutex unless the calling thread holds the lock.
● You must call unlock as many times as you called lock for the mutex to

become available to another thread.
● Using recursive mutexes, the code fragment from the previous slide works

correctly:

#include <IceUtil/RecMutex.h>
// ...
IceUtil::RecMutex _mutex; // Recursive mutex
void f1()
{
 IceUtil::RecMutex::Lock lock(_mutex);
 // ...
}
void f2()
{
 IceUtil::RecMutex::Lock lock(_mutex);
 // Some code here...
 // Call f1 as a helper function
 f1(); // Fine
 // More code here...
}

#include <IceUtil/RecMutex.h>
// ...
IceUtil::RecMutex _mutex; // Recursive mutex
void f1()
{
 IceUtil::RecMutex::Lock lock(_mutex);
 // ...
}
void f2()
{
 IceUtil::RecMutex::Lock lock(_mutex);
 // Some code here...
 // Call f1 as a helper function
 f1(); // Fine
 // More code here...
}

14

Read-Write Recursive MutexesRead-Write Recursive Mutexes

● Our implementation of read and write operations is
more conservative in its locking than strictly
necessary: only one thread can be in either the read
or write operation at a time.

● However, we have problems with concurrent file
access only if we have concurrent writers, or
concurrent readers and writers for the same file.

● If we have only readers, there is no need to serialize
access for all the reading threads because none of
them updates the file contents.

15

Read-Write Recursive MutexesRead-Write Recursive Mutexes

● Ice provides a read-write recursive mutex class
RWRecMutex (IceUtil/RWRecMutex.h) that
implements a reader-writer lock:

namespace IceUtil {
 class RWRecMutex {
 public:
 void readLock() const;
 bool tryReadLock() const;
 bool timedReadLock(const Time&) const;
 void writeLock() const;
 bool tryWriteLock() const;
 bool timedWriteLock(const Time&) const;
 void unlock() const;
 void upgrade() const;
 bool timedUpgrade(const Time&) const;
 void downgrade() const;
 typedef RLockT<RWRecMutex> RLock;
 typedef TryRLockT<RWRecMutex> TryRLock;
 typedef WLockT<RWRecMutex> WLock;
 typedef TryWLockT<RWRecMutex> TryWLock;
 };
}

namespace IceUtil {
 class RWRecMutex {
 public:
 void readLock() const;
 bool tryReadLock() const;
 bool timedReadLock(const Time&) const;
 void writeLock() const;
 bool tryWriteLock() const;
 bool timedWriteLock(const Time&) const;
 void unlock() const;
 void upgrade() const;
 bool timedUpgrade(const Time&) const;
 void downgrade() const;
 typedef RLockT<RWRecMutex> RLock;
 typedef TryRLockT<RWRecMutex> TryRLock;
 typedef WLockT<RWRecMutex> WLock;
 typedef TryWLockT<RWRecMutex> TryWLock;
 };
}

16

Read-Write Recursive MutexesRead-Write Recursive Mutexes

● A read-write recursive mutex splits the usual single
lock operation into readLock and writeLock
operations.

● Multiple readers can each acquire the mutex in
parallel.

● Only a single writer can hold the mutex at any one
time (with neither other readers nor other writers
being present).

● A RWRecMutex is recursive, meaning that you can
call readLock or writeLock multiple times from
the same calling thread.

17

Read-Write Recursive MutexesRead-Write Recursive Mutexes

● readLock
● Acquires a read lock. If a writer currently holds the mutex or a thread is

waiting for a lock upgrade, the caller is suspended until the mutex
becomes available for reading. If the mutex is available, or only readers
currently hold the mutex, the call returns immediately with the mutex
locked.

● tryReadLock
● Attempts to acquire a read lock. If the lock is currently held by a writer or a

thread is waiting for a lock upgrade, the function returns false. Otherwise, it
acquires the lock and returns true.

● timedReadLock
● Attempts to acquire a read lock. If the lock is currently held by a writer or

another thread is waiting for an upgrade, the function waits for the
specified timeout. If the lock can be acquired within the timeout, the
function returns true with the lock held. Otherwise, once the timeout
expires, the function returns false.

18

Read-Write Recursive MutexesRead-Write Recursive Mutexes

● writeLock
● Acquires a write lock. If readers or a writer currently hold the mutex or

another thread is waiting for an upgrade, the caller is suspended until the
mutex becomes available for writing. If the mutex is available, the call
returns immediately with the lock held.

● tryWriteLock
● Attempts to acquire a write lock. If the lock is currently held by readers or a

writer, or if another thread is waiting for an upgrade, the function returns
false. Otherwise, it acquires the lock and returns true.

● timedWriteLock
● Attempts to acquire a write lock. If the lock is currently held by readers or a

writer, or if another thread is waiting for an upgrade, the function waits for
the specified timeout. If the lock can be acquired within the timeout, the
function returns true with the lock held. Otherwise, once the timeout
expires, the function returns false.

19

Read-Write Recursive MutexesRead-Write Recursive Mutexes

● unlock
● Unlocks the mutex (whether currently held for reading or writing).

● upgrade
● Upgrades a read lock to a write lock. If other readers currently hold the mutex, the caller is

suspended until the mutex becomes available for writing. If the mutex is available, the call
returns immediately with the lock held.

● Only one reader can attempt to upgrade a lock at a time. If several threads call upgrade, all
but the first thread receive a DeadlockException.

● upgrade is non-recursive. Do not call it more than once from the same thread.
● timedUpgrade

● Attempts to upgrade a read lock to a write lock. If the lock is currently held by other readers,
the function waits for the specified timeout. If the lock can be acquired within the timeout,
the function returns true with the lock held. Otherwise, once the timeout expires, the function
returns false.

● If another thread is waiting to upgrade the lock, timedUpgrade returns false immediately.
● timedUpgrade is non-recursive. Do not call it more than once from the same thread.

● downgrade
● Converts a write lock to a read lock.

20

Read-Write Recursive MutexesRead-Write Recursive Mutexes

● You must adhere to a few rules for correct use of read-write
locks:
● Do not call unlock on a mutex unless the calling thread holds the

lock.
● You must call unlock as many times as you called readLock or
writeLock (or upgrade or successful timedUpgrade) for the
mutex to become available to another thread.

● Do not call upgrade or timedUpgrade on a mutex for which you
do not hold a read lock.

● upgrade and timedUpgrade are non-recursive. Do not call these
methods more than once from the same thread.

● Do not call downgrade on a mutex unless the calling thread holds a
write lock.

● You must call downgrade (or unlock) as many times as you called
writeLock and upgrade (or successfully called timedUpgrade)
for the mutex to become available to another thread.

21

Read-Write Recursive MutexesRead-Write Recursive Mutexes
● Using a RWRecMutex, we can implement our read and write

operations to allow multiple readers in parallel, or a single writer:
#include <IceUtil/RWRecMutex.h>
// ...
namespace Filesystem {
 // ...
 class FileI : virtual public File,
 virtual public Filesystem::NodeI {
 public:
 // As before...
 private:
 Lines _lines;
 IceUtil::RWRecMutex _fileMutex; // Read-write mutex
 };
 // ...
}
Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
 IceUtil::RWRecMutex::RLock lock(_fileMutex); // Read lock
 return _lines;
}
void
Filesystem::FileI::write(const Filesystem::Lines& text,
 const Ice::Current&)
{
 IceUtil::RWRecMutex::WLock lock(_fileMutex); // Write lock
 _lines = text;
}

#include <IceUtil/RWRecMutex.h>
// ...
namespace Filesystem {
 // ...
 class FileI : virtual public File,
 virtual public Filesystem::NodeI {
 public:
 // As before...
 private:
 Lines _lines;
 IceUtil::RWRecMutex _fileMutex; // Read-write mutex
 };
 // ...
}
Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
 IceUtil::RWRecMutex::RLock lock(_fileMutex); // Read lock
 return _lines;
}
void
Filesystem::FileI::write(const Filesystem::Lines& text,
 const Ice::Current&)
{
 IceUtil::RWRecMutex::WLock lock(_fileMutex); // Write lock
 _lines = text;
}

22

Timed LocksTimed Locks

● Read-write locks provide member functions that operate with a
timeout.

● The amount of time to wait is specified by an instance of the
IceUtil::Time class (IceUtil/Time.h)

● We can get the timeout values using the following Time member
functions
● seconds
● milliSeconds
● microSeconds

● These functions construct Time objects from the argument in the
specified units. For example, the following code fragment creates
a time duration of one minute:
● IceUtil::Time t = IceUtil::Time::seconds(60);

23

Timed LocksTimed Locks

#include <IceUtil/RWRecMutex.h>
// ...
IceUtil::RWRecMutex _mutex;
// ...
// Wait for up to two seconds to get a write lock...
//
IceUtil::RWRecMutex::TryWLock lock(_mutex, IceUtil::Time::seconds(2));
if (lock.acquired())
{
 // Got the lock -- destructor of lock will unlock
}
else
{
 // Waited for two seconds without getting the lock...
}

#include <IceUtil/RWRecMutex.h>
// ...
IceUtil::RWRecMutex _mutex;
// ...
// Wait for up to two seconds to get a write lock...
//
IceUtil::RWRecMutex::TryWLock lock(_mutex, IceUtil::Time::seconds(2));
if (lock.acquired())
{
 // Got the lock -- destructor of lock will unlock
}
else
{
 // Waited for two seconds without getting the lock...
}

● TryRLock and TryWLock constructors are overloaded: if
you supply only a mutex as the sole argument, the
constructor calls tryReadLock or tryWriteLock; if you
supply both a mutex and a timeout, the constructor calls
timedReadLock or timedWriteLock.

24

MonitorsMonitors

● Mutexes implement a simple mutual exclusion mechanism
that allows only a single thread (or, in the case of read-write
mutexes, a single writer thread or multiple reader threads) to
be active in a critical region at a time.

● In particular, for another thread to enter the critical region,
another thread must leave it.
● It is impossible to suspend a thread inside a critical region and

have that thread wake up again at a later time, for example,
when a condition becomes true.

25

MonitorsMonitors

● A monitor is a synchronization mechanism that protects a
critical region:
● As for a mutex, only one thread may be active at a time inside

the critical region.
● However, a monitor allows you to suspend a thread inside the

critical region;
● Doing so allows another thread to enter the critical region.

● The second thread can either leave the monitor (thereby
unlocking the monitor), or it can suspend itself inside the
monitor;
● Either way, the original thread is woken up and continues

execution inside the monitor.

26

MonitorsMonitors

● This extends to any number of threads, so several threads
can be suspended inside a monitor
● Monitors provide a more flexible mutual exclusion mechanism

than mutexes because they allow a thread to check a condition
and, if the condition is false, put itself to sleep;

● The thread is woken up by some other thread that has changed
the condition.

● The monitors provided by Ice have Mesa semantics, so
called because they were first implemented by the Mesa
programming language.
● Mesa monitors are provided by a number of languages,

including Java and Ada.
● With Mesa semantics, the signalling thread continues to run

and another thread gets to run only once the signalling thread
suspends itself or leaves the monitor.

27

The The MonitorMonitor Class Class
● Ice provides monitors with the IceUtil::Monitor class

(IceUtil/Monitor.h)

● Monitor is a template class that requires either Mutex or
RecMutex as its template parameter.
● Instantiating a Monitor with a RecMutex makes the monitor

recursive.

namespace IceUtil {
 template <class T>
 class Monitor {
 public:
 void lock() const;
 void unlock() const;
 bool tryLock() const;
 void wait() const;
 bool timedWait(const Time&) const;
 void notify();
 void notifyAll();
 typedef LockT<Monitor<T> > Lock;
 typedef TryLockT<Monitor<T> > TryLock;
 };
}

namespace IceUtil {
 template <class T>
 class Monitor {
 public:
 void lock() const;
 void unlock() const;
 bool tryLock() const;
 void wait() const;
 bool timedWait(const Time&) const;
 void notify();
 void notifyAll();
 typedef LockT<Monitor<T> > Lock;
 typedef TryLockT<Monitor<T> > TryLock;
 };
}

28

The The MonitorMonitor Class Class

● lock
● Attempts to lock the monitor. If the monitor is currently locked

by another thread, the calling thread is suspended until the
monitor becomes available. The call returns with the monitor
locked.

● tryLock
● Attempts to lock a monitor. If the monitor is available, the call

returns true with the monitor locked. If the monitor is locked by
another thread, the call returns false.

● unlock
● Unlocks a monitor. If other threads are waiting to enter the

monitor (are blocked inside a call to lock), one of the threads is
woken up and locks the monitor.

29

The The MonitorMonitor Class Class

● wait
● Suspends the calling thread and, at the same time, releases

the lock on the monitor. A thread suspended inside a call to
wait can be woken up by another thread that calls notify or
notifyAll. When the call returns, the suspended thread
resumes execution with the monitor locked.

● timedWait
● Suspends the calling thread for up to the specified timeout. If

another thread calls notify or notifyAll and wakes up the
suspended thread before the timeout expires, the call returns
true and the suspended thread resumes execution with the
monitor locked. Otherwise, if the timeout expires, the function
returns false.

30

The The MonitorMonitor Class Class
● notify

● Wakes up a single thread that is currently suspended in a call
to wait or timedWait. If no thread is suspended in a call to
wait or timedWait at the time notify is called, the notification
is lost (that is, calls to notify are not remembered if there is no
thread to be woken up). Note that notifying does not run
another thread immediately. Another thread gets to run only
once the notifying thread either calls wait or timedWait or
unlocks the monitor (Mesa semantics).

● notifyAll
● Wakes up all threads that are currently suspended in a call to

wait or timedWait. As for notify, calls to notifyAll are lost
if no threads are suspended at the time. As for notify,
notifyAll causes other threads to run only once the notifying
thread has either called wait or timedWait or unlocked the
monitor (Mesa semantics).

31

The The MonitorMonitor Class Class

● You must adhere to a few rules for monitors to work
correctly:
● Do not call unlock unless you hold the lock. If you instantiate

a monitor with a recursive mutex, you get recursive semantics,
that is, you must call unlock as many times as you have
called lock (or tryLock) for the monitor to become available.

● Do not call wait or timedWait unless you hold the lock.
● Do not call notify or notifyAll unless you hold the lock.
● When returning from a wait call, you must re-test the condition

before proceeding.

32

Using MonitorsUsing Monitors
● Consider a simple unbounded queue of items.
● A number of producer threads add items to the queue, and a number of consumer

threads remove items from the queue.
● If the queue becomes empty, consumers must wait until a producer puts a new item

on the queue.
● The queue itself is a critical region, that is, we cannot allow a producer to put an item

on the queue while a consumer is removing an item.
● Producers call the put method to enqueue an item, and consumers call the get

method to dequeue an item.
● This implementation of the queue is not thread-safe and there is nothing to stop a

consumer from attempting to dequeue an item from an empty queue.
template<class T> class Queue {
 public:
 void put(const T& item) {
 _q.push_back(item);
 }
 T get() {
 T item = _q.front();
 _q.pop_front();
 return item;
 }
 private:
 list<T> _q;
};

template<class T> class Queue {
 public:
 void put(const T& item) {
 _q.push_back(item);
 }
 T get() {
 T item = _q.front();
 _q.pop_front();
 return item;
 }
 private:
 list<T> _q;
};

33

Using MonitorsUsing Monitors

● Here is a version of the queue that uses a monitor to suspend a consumer if the
queue is empty.

● Queue class now inherits from IceUtil::Monitor<IceUtil::Mutex>, that is,
Queue is-a Monitor

#include <IceUtil/Monitor.h>
template<class T> class Queue
: public IceUtil::Monitor<IceUtil::Mutex> {
 public:
 void put(const T& item) {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 _q.push_back(item);
 notify();
 }
 T get() {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 while (_q.size() == 0)
 wait();
 T item = _q.front();
 _q.pop_front();
 return item;
 }
 private:
 list<T> _q;
};

#include <IceUtil/Monitor.h>
template<class T> class Queue
: public IceUtil::Monitor<IceUtil::Mutex> {
 public:
 void put(const T& item) {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 _q.push_back(item);
 notify();
 }
 T get() {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 while (_q.size() == 0)
 wait();
 T item = _q.front();
 _q.pop_front();
 return item;
 }
 private:
 list<T> _q;
};

34

Using MonitorsUsing Monitors

● For this machinery to work correctly, the implementation of
get does two things:
● get tests whether the queue is empty after acquiring the lock.
● get re-tests the condition in a loop around the call to wait; if

the queue is still empty after wait returns, the wait call is re-
entered.

● You must always write your code to follow the same pattern:
● Never test a condition unless you hold the lock.
● Always re-test the condition in a loop around wait. If the test

still shows the wrong outcome, call wait again.

35

Using MonitorsUsing Monitors
● Not adhering to these conditions will eventually result in a

thread accessing shared data when it is not in its expected
state, for the following reasons:
● If you test a condition without holding the lock, there is nothing

to prevent another thread from entering the monitor and
changing its state before you can acquire the lock. This means
that, by the time you get around to locking the monitor, the
state of the monitor may no longer be in agreement with the
result of the test.

● Some thread implementations suffer from a problem known as
spurious wake-up: occasionally, more than one thread may
wake up in response to a call to notify, or a thread may wake
up without any call to notify at all. As a result, each thread that
returns from a call to wait must re-test the condition to ensure
that the monitor is in its expected state: the fact that wait
returns does not indicate that the condition has changed.

36

Efficient NotificationEfficient Notification

● The previous implementation of our thread-safe queue
unconditionally notifies a waiting reader whenever a writer
deposits an item into the queue.

● If no reader is waiting, the notification is lost and does no
harm.

● Unless there is only a single reader and writer, many
notifications will be sent unnecessarily, causing unwanted
overhead.

● Here is a way to fix the problem:

37

Efficient NotificationEfficient Notification
● We keep track of the number of waiting readers and call notify only if a reader needs to be

woken up:

#include <IceUtil/Monitor.h>
template<class T> class Queue
: public IceUtil::Monitor<IceUtil::Mutex> {
 public:
 Queue() : _waitingReaders(0) {}
 void put(const T& item) {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 _q.push_back(item);
 if (_waitingReaders)
 notify();
 }
 T get() {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 while (_q.size() == 0) {
 try {
 ++_waitingReaders;
 wait();
 --_waitingReaders;
 } catch (...) {
 --_waitingReaders;
 throw;
 }
 }
 T item = _q.front();
 _q.pop_front();
 return item;
 }
 private:
 list<T> _q;
 short _waitingReaders;
};

#include <IceUtil/Monitor.h>
template<class T> class Queue
: public IceUtil::Monitor<IceUtil::Mutex> {
 public:
 Queue() : _waitingReaders(0) {}
 void put(const T& item) {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 _q.push_back(item);
 if (_waitingReaders)
 notify();
 }
 T get() {
 IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
 while (_q.size() == 0) {
 try {
 ++_waitingReaders;
 wait();
 --_waitingReaders;
 } catch (...) {
 --_waitingReaders;
 throw;
 }
 }
 T item = _q.front();
 _q.pop_front();
 return item;
 }
 private:
 list<T> _q;
 short _waitingReaders;
};

38

ThreadsThreads
● The server-side Ice run time by default creates a thread pool for

you and automatically dispatches each incoming request in its
own thread.

● As a result, you usually only need to worry about synchronization
among threads to protect critical regions when you implement a
server.

● However, you may wish to create threads of your own.
● You might need a dedicated thread that responds to input from a

user interface.
● If you have complex and long-running operations that can exploit

parallelism, you might wish to use multiple threads for the
implementation of that operation.

● Ice provides a simple thread abstraction that permits you to write
portable source code regardless of the native threading platform.
● This shields you from the native underlying thread APIs and

guarantees uniform semantics regardless of your deployment
platform.

39

The The ThreadThread Class Class
● The basic thread abstraction in Ice is provided by two

classes, ThreadControl and Thread
(IceUtil/Thread.h):

namespace IceUtil {
 class Time;
 class ThreadControl {
 public:
#ifdef _WIN32
 typedef DWORD ID;
#else
 typedef pthread_t ID;
#endif
 ThreadControl();
#ifdef _WIN32
 ThreadControl(HANDLE, DWORD);
#else
 ThreadControl(explicit pthread_t);
#endif
 ID id() const;
 void join();
 void detach();
 static void sleep(const Time&);
 static void yield();
 bool operator==(const ThreadControl&) const;
 bool operator!=(const ThreadControl&) const;
 };

namespace IceUtil {
 class Time;
 class ThreadControl {
 public:
#ifdef _WIN32
 typedef DWORD ID;
#else
 typedef pthread_t ID;
#endif
 ThreadControl();
#ifdef _WIN32
 ThreadControl(HANDLE, DWORD);
#else
 ThreadControl(explicit pthread_t);
#endif
 ID id() const;
 void join();
 void detach();
 static void sleep(const Time&);
 static void yield();
 bool operator==(const ThreadControl&) const;
 bool operator!=(const ThreadControl&) const;
 };

 class Thread {
 public:
 virtual void run() = 0;
 ThreadControl start(size_t = 0);
 ThreadControl getThreadControl() const;
 bool isAlive() const;
 bool operator==(const Thread&) const;
 bool operator!=(const Thread&) const;
 bool operator<(const Thread&) const;
 };
 typedef Handle<Thread> ThreadPtr;
}

 class Thread {
 public:
 virtual void run() = 0;
 ThreadControl start(size_t = 0);
 ThreadControl getThreadControl() const;
 bool isAlive() const;
 bool operator==(const Thread&) const;
 bool operator!=(const Thread&) const;
 bool operator<(const Thread&) const;
 };
 typedef Handle<Thread> ThreadPtr;
}

40

The The ThreadThread Class Class

● The Thread class is an abstract base class with a pure
virtual run method.

● To create a thread, you must specialize the Thread class
and implement the run method (which becomes the starting
stack frame for the new thread).

● You must not allow any exceptions to escape from run.
● The Ice run time installs an exception handler that calls
::std::terminate if run terminates with an exception.

41

The The ThreadThread Class Class
● start

● Starts a newly-created thread (that is, calls the run method).
● The optional parameter specifies a stack size (in bytes) for the thread. The

default value of zero creates the thread with a default stack size that is
determined by the operating system.

● The return value is a ThreadControl object for the new thread
● You can start a thread only once; calling start on an already-started thread

raises ThreadStartedException.
● getThreadControl

● This member function returns a thread control object for the thread on
which it is invoked.

● Calling this method before calling start raises a
ThreadNotStartedException.

● id
● This method returns the underlying thread ID (DWORD for Windows and
pthread_t for POSIX threads). This method is provided mainly for
debugging purposes

42

The The ThreadThread Class Class
● isAlive

● Returns false before a thread’s start method has been called and
after a thread’s run method has completed; otherwise, while the
thread is still running, it returns true.

● isAlive is useful to implement a non-blocking join:
 ThreadPtr p = new MyThread();
 // ...
 while(p->isAlive()) {
 // Do something else...
 }
 t.join(); // Will not block• operator==
● operator!=
● operator<

● Compare the in-memory address of two threads.
● They are provided so you can use sorted STL containers with
Thread objects.

43

Implementing ThreadsImplementing Threads

#include <IceUtil/Thread.h>
// ...
Queue q;
class ReaderThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 cout << q.get() << endl;
 }
 };
class WriterThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 q.put(i);
 }
};

#include <IceUtil/Thread.h>
// ...
Queue q;
class ReaderThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 cout << q.get() << endl;
 }
 };
class WriterThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 q.put(i);
 }
};

44

Creating ThreadsCreating Threads
● To create a new thread, we simply instantiate the thread and call its start

method:
 IceUtil::ThreadPtr t = new ReaderThread;
 t->start();
 // ...
● We assign the return value from new to a smart pointer of type ThreadPtr.

This ensures that we do not suffer a memory leak:
● When the thread is created, its reference count is set to zero.
● Prior to calling run (which is called by the start method), start increments the

reference count of the thread to 1.
● For each ThreadPtr for the thread, the reference count of the thread is

incremented by 1, and for each ThreadPtr that is destroyed, the reference count
is decremented by 1.

● ThreadPtr is another example of an RAII class
● When run completes, start decrements the reference count again and then

checks its value: if the value is zero at this point, the Thread object deallocates
itself by calling delete this; if the value is non-zero at this point, there are other
smart pointers that reference this Thread object and deletion happens when the
last smart pointer goes out of scope.

45

Creating ThreadsCreating Threads
● You must allocate your Thread objects on the heap - stack-

allocated Thread objects will result in deallocation errors:
 ReaderThread thread;
 IceUtil::ThreadPtr t = &thread; // Bad news!!!
● This is wrong because the destructor of t will eventually call

delete, which has undefined behavior for a stack-allocated
object.

● Similarly, you must use a ThreadPtr for an allocated
thread.
● Do not attempt to explicitly delete a a thread:

 Thread* t = new ReaderThread();
 // ...
 delete t; // Disaster!
● This will result in a double deallocation of the thread

because the thread’s destructor will call delete this.

46

The The ThreadControlThreadControl Class Class
● The start method returns an object of type ThreadControl
● The member functions of ThreadControl behave as follows:
● ThreadControl

● The default constructor returns a ThreadControl object that refers to the
calling thread. This allows you to get a handle to the current (calling)
thread even if you do not have saved a handle to that thread previously.
For example:

 IceUtil::ThreadControl self; // Get handle to self
 cout << self.id() << endl; // Print thread ID

● This example also explains why we have two classes, Thread and
Thread-Control: without a separate ThreadControl, it would not be
possible to obtain a handle to an arbitrary thread.

● This code works even if the calling thread was not created by the Ice run
time; for example, you can create a ThreadControl object for a thread
that was created by the operating system

● The (implicit) copy constructor and assignment operator create a
ThreadControl object that refers to the same underlying thread as the
source ThreadControl object.

47

The The ThreadControlThreadControl Class Class
● join

● Suspends the calling thread until the thread on which join is called has
terminated. For example:

● IceUtil::ThreadPtr t = new ReaderThread; // Create a
thread

● IceUtil::ThreadControl tc = t->start(); // Start it
● tc.join(); // Wait for it
● If the reader thread has finished by the time the creating thread calls
join, the call to join returns immediately; otherwise, the creating thread
is suspended until the reader thread terminates.

● The join method of a thread must be called from only one other thread,
that is, only one thread can wait for another thread to terminate.

● Calling join on a thread from more than one other thread has undefined
behavior.

● Calling join on a thread that was previously joined with or calling join on a
detached thread has undefined behavior.

● You must join with each thread you create; failure to join with a thread
has undefined behavior.

48

The The ThreadControlThreadControl Class Class

● detach
● Detaches a thread. Once a thread is detached, it cannot be

joined with.
● Calling detach on an already detached thread, or calling

detach on a thread that was previously joined with has
undefined behavior.

● If you have detached a thread, you must ensure that the
detached thread has terminated before your program leaves its
main function. This means that, because detached threads
cannot be joined with, they must have a life time that is shorter
than that of the main thread.

● sleep
● This method suspends the calling thread for the amount of time

specified by the Time parameter

49

The The ThreadControlThreadControl Class Class

● yield
● This method causes the calling thread to relinquish the CPU,

allowing another thread to run.
● operator==
● operator!=

● These operators compare thread IDs.
● operator< is not provided because it cannot be implemented

portably.
● These operators yield meaningful results only for threads that

have not been detached or joined with.

50

The The ThreadControlThreadControl Class Class
● You must adhere to a few rules when using threads to avoid undefined

behavior:
● Do not allow run to throw an exception.
● Do not join with or detach a thread that you have not created yourself.
● For every thread you create, you must either join with that thread exactly

once or detach it exactly once; failure to do so may cause resource leaks.
● Do not call join on a thread from more than one other thread.
● Do not leave main until all other threads you have created have

terminated.
● Do not leave main until after you have destroyed all Ice::Communicator

objects you have created.
● A common mistake is to call yield from within a critical region.

● Doing so is usually pointless because the call to yield will look for another
thread that can be run but, when that thread is run, it will most likely try to enter
the critical region that is held by the yielding thread and go to sleep again.

● At best, this achieves nothing and, at worst, it causes many additional context
switches for no gain.

● If you call yield, do so only in circumstances where there is at least a fair
chance that another thread will actually be able to run and do something useful.

51

The The ThreadControlThreadControl Example Example
#include <vector>
#include <IceUtil/Thread.h>
// ...
Queue q;
class ReaderThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 cout << q.get() << endl;
 }
};
class WriterThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 q.put(i);
 }
};

#include <vector>
#include <IceUtil/Thread.h>
// ...
Queue q;
class ReaderThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 cout << q.get() << endl;
 }
};
class WriterThread : public IceUtil::Thread {
 virtual void run() {
 for (int i = 0; i < 100; ++i)
 q.put(i);
 }
};

int main()
{
 vector<IceUtil::ThreadControl> threads;
 int i;
 // Create five reader threads and start them
 //
 for (i = 0; i < 5; ++i) {
 IceUtil::ThreadPtr t = new ReaderThread;
 threads.push_back(t->start());
 }
 // Create five writer threads and start them
 //
 for (i = 0; i < 5; ++i) {
 IceUtil::ThreadPtr t = new WriterThread;
 threads.push_back(t->start());
 }
 // Wait for all threads to finish
 //
 for (vector<IceUtil::ThreadControl>::iterator i
 = threads.begin();
 i != threads.end(); ++i) {
 i->join();
 }
}

int main()
{
 vector<IceUtil::ThreadControl> threads;
 int i;
 // Create five reader threads and start them
 //
 for (i = 0; i < 5; ++i) {
 IceUtil::ThreadPtr t = new ReaderThread;
 threads.push_back(t->start());
 }
 // Create five writer threads and start them
 //
 for (i = 0; i < 5; ++i) {
 IceUtil::ThreadPtr t = new WriterThread;
 threads.push_back(t->start());
 }
 // Wait for all threads to finish
 //
 for (vector<IceUtil::ThreadControl>::iterator i
 = threads.begin();
 i != threads.end(); ++i) {
 i->join();
 }
}

52

Portable Signal HandlingPortable Signal Handling

● The IceUtil::CtrlCHandler class provides a portable
mechanism to handle Ctrl+C and similar signals sent to a
C++ process.
● On Windows, IceUtil::CtrlCHandler is a wrapper for
SetConsoleCtrlHandler;

● On POSIX platforms, it handles SIGHUP, SIGTERM and
SIGINT with a dedicated thread that waits for these signals
using sigwait.

● Signals are handled by a callback function implemented and
registered by the user.

● The callback is a simple function that takes an int (the signal
number) and returns void; it should not throw any exception:

53

Portable Signal HandlingPortable Signal Handling

namespace IceUtil {
 typedef void (*CtrlCHandlerCallback)(int);
 class CtrlCHandler {
 public:
 CtrlCHandler(CtrlCHandlerCallback = 0);
 ~CtrlCHandler();
 void setCallback(CtrlCHandlerCallback);
 CtrlCHandlerCallback getCallback() const;
};
}

namespace IceUtil {
 typedef void (*CtrlCHandlerCallback)(int);
 class CtrlCHandler {
 public:
 CtrlCHandler(CtrlCHandlerCallback = 0);
 ~CtrlCHandler();
 void setCallback(CtrlCHandlerCallback);
 CtrlCHandlerCallback getCallback() const;
};
}

54

Portable Signal HandlingPortable Signal Handling

● The member functions of CtrlCHandler behave as
follows:

● Constructor
● Constructs an instance with a callback function.
● Only one instance of CtrlCHandler can exist in a process at

a given moment in time.
● On POSIX platforms, the constructor masks SIGHUP,

SIGTERM and SIGINT, then starts a thread that waits for these
signals using sigwait.

● For signal masking to work properly, it is imperative that the
CtrlCHandler instance be created before starting any
thread, and in particular before initializing an Ice communicator.

55

Portable Signal HandlingPortable Signal Handling

Destructor
● Destroys the instance, after which the default signal processing

behavior is restored on Windows (TerminateProcess).
● On POSIX platforms, the “sigwait” thread is cancelled and

joined, but the signal mask remains unchanged, so subsequent
signals are ignored.

● setCallback
● Sets a new callback function.

● getCallback
● Gets the current callback function.

● It is legal to specify a value of zero (0) for the callback
function, in which case signals are caught and ignored until
a non-zero callback function is set.

	Introduction to PETSc 2
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55

