
1

IceIce

The Slice Language

2

Single Development Environment for Client and ServerSingle Development Environment for Client and Server

3

Different Development Environments for Client and ServerDifferent Development Environments for Client and Server

4

Slice Source FIlesSlice Source FIles

● Files containing Slice definitions must end in a .ice file extension, for
example, Clock.ice is a valid file name. Other file extensions are
rejected by the compilers.

● Slice is a free-form language so you can use spaces, horizontal and
vertical tab stops, form feeds, and newline characters to lay out your
code in any way you wish.

● Slice files use the (7-bit) ASCII character set.
● Slice is preprocessed by the C++ preprocessor, so you can use the

usual preprocessor directives, such as #include and macro definitions.
● Slice permits #include directives only at the beginning of a file, before any

Slice definitions.
● If you include a path separator in a #include directive, you must use a

forward slash.
● Slice constructs, such as modules, interfaces, or type definitions, can

appear in any order you prefer.
● Identifiers must be declared before they can be used.

5

Lexical RulesLexical Rules
● Slice definitions permit both the C and the C++ style of writing

comments:
/*
 * C-style comment.
 */
// C++-style comment extending to the end of this line.

● Slice uses a number of keywords, which must be spelled in
lowercase.
● Examples: class and dictionary
● Two exceptions: Object and LocalObject

● Identifiers begin with an alphabetic character followed by any
number of alphabetic characters or digits
● Slice identifiers cannot contain underscores.

● Identifiers are case-insensitive but must be capitalized
consistently.

● Slice reserves the identifier Ice and all identifiers beginning with
Ice (in any capitalization) for the Ice implementation.

6

ModulesModules

● Prevent pollution of the global namespace
module ZeroC {
 module Client {
 // Definitions here...
 };
 module Server {
 // Definitions here...
 };
};

● A module can contain any legal Slice construct, including
other module definitions.

● Slice requires all definitions to be nested inside a module,
that is, you cannot define anything other than a module at
global scope. For example, the following is illegal:
interface I { // Error: only modules can appear at global scope
 // ...
};

7

ModulesModules

● Modules can be reopened:
module ZeroC {
 // Definitions here...
};

// Possibly in a different source file:

module ZeroC { // OK, reopened module
 // More definitions here...
};

● APIs for the Ice run time, apart from a small number of
language-specific calls that cannot be expressed in Ice, are
defined in the Ice module.

8

Basic Slice TypesBasic Slice Types

9

EnumerationsEnumerations

● A Slice enumerated type definition looks like the C++ version:
● enum Fruit { Apple, Pear, Orange };

● Slice does not define how ordinal values are assigned to
enumerators.

● Slice does not permit you to control the ordinal values of
enumerators, the following Slice code is illegal:
● enum Fruit { Apple = 0, Pear = 7, Orange = 2 };

● Slice enumerators enter the enclosing namespace, so the
following is illegal:
● enum Fruit { Apple, Pear, Orange };
● enum ComputerBrands { Apple, IBM, Sun, HP }; // Apple
redefined

● Slice does not permit empty enumerations.

10

StructuresStructures

● Slice supports structures containing one or more named
members of arbitrary type, including user-defined complex
types.
struct TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
};

● Structure definitions form a namespace, so the names of the
structure members need to be unique only within their
enclosing structure.

11

StructuresStructures

● Data member definitions using a named type are the only
construct that can appear inside a structure. It is impossible
to, for example, define a structure inside a structure:
struct TwoPoints {
 struct Point { // Illegal!
 short x;
 short y;
 };
 Point coord1;
 Point coord2;
};

● This rule applies to Slice in general: type definitions cannot
be nested, except for modules

12

StructuresStructures

● The structure from the previous slide can be defined as
follows:

struct Point {
 short x;
 short y;
};

struct TwoPoints { // Legal (and cleaner!)
 Point coord1;
 Point coord2;
};

13

SequencesSequences

● Sequences are variable-length collections of elements:
● sequence<Fruit> FruitPlatter;

● Sequences can contain elements that are themselves
sequences. This arrangement allows you to create lists of
lists:
● sequence<FruitPlatter> FruitBanquet;

● Sequences can be used to model the optional field:
sequence<long> SerialOpt;
struct Part {
 string name;
 string description;
 // ...
 SerialOpt serialNumber; // optional: zero or one element
};

14

DictionariesDictionaries
● A dictionary is a mapping from a key type to a value type:

struct Employee {
 long number;
 string firstName;
 string lastName;
};
dictionary<long, Employee> EmployeeMap;

● The key type of a dictionary need not be an integral type.
● dictionary<string, string> WeekdaysEnglishToGerman;

● The value type of a dictionary can be any user-defined type.
The key type of a dictionary is limited to one of the following
types:
● Integral types (byte, short, int, long, bool, and

enumerated types)
● string
● Structures containing only data members of integral type or
string

15

Constant Definitions and LiteralsConstant Definitions and Literals

● Constant definitions must be of one of the following types:
● An integral type (bool, byte, short, int, long, or an

enumerated type)
● float or double
● string

● Examples:
● const bool AppendByDefault = true;
● const byte LowerNibble = 0x0f;
● const string Advice = "Don't Panic!";
● const short TheAnswer = 42;
● const double PI = 3.1416;
● enum Fruit { Apple, Pear, Orange };
● const Fruit FavoriteFruit = Pear;

16

Constant Definitions and LiteralsConstant Definitions and Literals

● The syntax for literals is the same as for C++ and Java (with
a few minor exceptions):
● Boolean constants can only be initialized with the keywords
false and true. (You cannot use 0 and 1 to represent false
and true.)

● As for C++, integer literals can be specified in decimal, octal, or
hexadecimal notation. For example:
● const byte TheAnswer = 42;
● const byte TheAnswerInOctal = 052;
● const byte TheAnswerInHex = 0x2A; // or 0x2a

● If you interpret byte as a number instead of a bit pattern, you
may get different results in different languages. For example,
for C++, byte maps to unsigned char whereas, for Java,
byte maps to byte, which is a signed type.

17

Constant Definitions and LiteralsConstant Definitions and Literals

● The suffixes to indicate long and unsigned constants (l, L, u,
U, used by C++) are illegal:
● const long Wrong = 0u; // Syntax error
● const long WrongToo = 1000000L; // Syntax error

● Floating-point literals use C++ syntax, except that you
cannot use an l or L suffix to indicate an extended floating-
point constant; however, f and F are legal (but are ignored).
● const float P1 = -3.14f; // Integer & fraction, with
suffix

● const float P2 = +3.1e-3; // Integer, fraction, and
exponent

● const float P3 = .1; // Fraction part only
● const float P4 = 1.; // Integer part only
● const float P5 = .9E5; // Fraction part and exponent
● const float P6 = 5e2; // Integer part and exponent

18

Constant Definitions and LiteralsConstant Definitions and Literals

● String literals support the same escape sequences as C++.
● const string AnOrdinaryString = "Hello World!";
● const string DoubleQuote = "\"";
● const string TwoSingleQuotes = "'\'"; // ' and \' are OK
● const string Newline = "\n";
● const string CarriageReturn = "\r";
● const string HorizontalTab = "\t";
● const string VerticalTab = "\v";
● const string FormFeed = "\f";
● const string Alert = "\a";
● const string Backspace = "\b";
● const string QuestionMark = "\?";
● const string Backslash = "\\";
● const string OctalEscape = "\007"; // Same as \a
● const string HexEscape = "\x07"; // Ditto
● const string UniversalCharName = "\u03A9"; // Greek Omega

19

Constant Definitions and LiteralsConstant Definitions and Literals

● As for C++, adjacent string literals are concatenated:
const string MSG1 = "Hello World!";
const string MSG2 = "Hello" " " "World!"; // Same message
/*
* Escape sequences are processed before concatenation,
* so the string below contains two characters,
* '\xa' and 'c'.
*/
const string S = "\xa" "c";

● Note that Slice has no concept of a null string:
● const string nullString = 0; // Illegal!

● Null strings simply do not exist in Slice and, therefore, do
not exist as a legal value for a string anywhere in the Ice
platform.

20

Interfaces, Operations, and ExceptionsInterfaces, Operations, and Exceptions

● The central focus of Slice is on defining interfaces, for
example:
struct TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
};
interface Clock {
 TimeOfDay getTime();
 void setTime(TimeOfDay time);
};

21

Parameters and Return ValuesParameters and Return Values
● An operation definition must contain a return type and zero

or more parameter definitions.
● You must use void to indicate that an operation returns no

value - there is no default return type for Slice operations.
● An operation can have one or more input parameters.

interface CircadianRhythm {
 void setSleepPeriod(TimeOfDay startTime,
 TimeOfDay stopTime);
 // ...
};

● The parameter name is mandatory. The following is in error:
interface CircadianRhythm {
 void setSleepPeriod(TimeOfDay, TimeOfDay);
 // Error!
 // ...
};

22

Parameters and Return ValuesParameters and Return Values

● By default, parameters are sent from the client to the server,
that is, they are input parameters. To pass a value from the
server to the client, you can use an output parameter,
indicated by the out keyword.

● An alternative way to define the getTime operation
● void getTime(out TimeOfDay time);

● You can use multiple output parameters:
interface CircadianRhythm {
 void setSleepPeriod(TimeOfDay startTime,
 TimeOfDay stopTime);
 void getSleepPeriod(out TimeOfDay startTime,
 out TimeOfDay stopTime);
 // ...
};

23

Parameters and Return ValuesParameters and Return Values
● If you have both input and output parameters for an operation, the

output parameters must follow the input parameters:
void changeSleepPeriod(TimeOfDay startTime, // OK
 TimeOfDay stopTime,
 out TimeOfDay prevStartTime,
 out TimeOfDay prevStopTime);
void changeSleepPeriod(out TimeOfDay prevStartTime,
 out TimeOfDay prevStopTime,
 TimeOfDay startTime, // Error
 TimeOfDay stopTime);

● Slice does not support parameters that are both input and output
parameters (call by reference).

● For operations that return only a single value, it is common to return
the value from the operation instead of using an out-parameter.

● For operations that return multiple values, it is common to return all
values as out-parameters and to use a return type of void.
● The rule is not all that clear-cut because operations with multiple output

values can have one particular value that is considered more “important”
than the remainder.

24

OverloadingOverloading

● Slice does not support any form of overloading of
operations.
interface CircadianRhythm {
 void modify(TimeOfDay startTime,
 TimeOfDay endTime);
 void modify(TimeOfDay startTime, // Error
 TimeOfDay endTime,
 out timeOfDay prevStartTime,
 out TimeOfDay prevEndTime);
};

● Operations in the same interface must have different names,
regardless of what type and number of parameters they
have.

25

Idempotent OperationsIdempotent Operations
● Some operations do not modify the state of the object they operate on.

They are the conceptual equivalent of C++ const member functions.
Similary, setTime does modify the state of the object, but is
idempotent. You can indicate this in Slice as follows:
interface Clock {
idempotent TimeOfDay getTime();
idempotent void setTime(TimeOfDay time);
};

● An operation is idempotent if two successive invocations of the
operation have the same effect as a single invocation.
● x = 1; is an idempotent operation because it does not matter

whether it is executed once or twice
● Either way, x ends up with the value 1.

● x += 1; is not an idempotent operation
● Executing it twice results in a different value for x than executing it

once.
● Obviously, any read-only operation is idempotent.

26

User ExceptionsUser Exceptions

● Slice allows to define user exceptions to indicate error
conditions to the client. For example:
exception Error {}; // Empty exceptions are legal
exception RangeError {
 TimeOfDay errorTime;
 TimeOfDay minTime;
 TimeOfDay maxTime;
};

● A user exception is much like a structure in that it contains a
number of data members. However, unlike structures,
exceptions can have zero data members, that is, be empty.

27

User ExceptionsUser Exceptions
● Operations use an exception specification to indicate the exceptions

that may be returned to the client:
interface Clock {
 idempotent TimeOfDay getTime();
 idempotent void setTime(TimeOfDay time)
 throws RangeError, Error;
};

● This definition indicates that the setTime operation may throw either
a RangeError or an Error user exception (and no other type of
exception).
● If the client receives a RangeError exception, the exception contains the
TimeOfDay value that was passed to setTime and caused the error, as
well as the minimum and maximum time values that can be used.

● If setTime failed because of an error not caused by an illegal parameter
value, it throws Error.
● The client will have no idea what exactly it was that went wrong - it

simply knows that the operation did not work.

28

User ExceptionsUser Exceptions
● An operation can throw only those user exceptions that are listed

in its exception specification. If, at run time, the implementation
of an operation throws an exception that is not listed in its
exception specification, the client receives a runtime exception to
indicate that the operation did something illegal. To indicate that
an operation does not throw any user exception, simply omit the
exception specification.

● Exceptions are not first-class data types and first-class data
types are not exceptions:
● You cannot pass an exception as a parameter value.
● You cannot use an exception as the type of a data member.
● You cannot use an exception as the element type of a sequence.
● You cannot use an exception as the key or value type of a

dictionary.
● You cannot throw a value of non-exception type (such as a value of

type int or string).

29

Exception InheritanceException Inheritance
● Exceptions support inheritance.

exception ErrorBase {
 string reason;
};
enum RTError {
 DivideByZero, NegativeRoot, IllegalNull /* ... */
};
exception RuntimeError extends ErrorBase {
 RTError err;
};
enum LError { ValueOutOfRange, ValuesInconsistent, /* ... */ };
exception LogicError extends ErrorBase {
 LError err;
};
exception RangeError extends LogicError {
 TimeOfDay errorTime;
 TimeOfDay minTime;
 TimeOfDay maxTime;
};

30

Exception InheritanceException Inheritance

● If the exception specification of an operation indicates a
specific exception type, at run time, the implementation of
the operation may also throw more derived exceptions.
exception Base {
 // ...
};
exception Derived extends Base {
 // ...
};
interface Example {
 void op() throws Base; // May throw Base or Derived
};

31

Ice Run-Time ExceptionsIce Run-Time Exceptions
● In addition to any user exceptions that are listed in an

operation’s exception specification, an operation can also
throw Ice run-time exceptions.

● The exception specification of an operation must not list any
run-time exceptions.

● All the Ice run-time and user exceptions are arranged in the
following inheritance hierarchy:

32

The Complete Hierarchy of The Ice Run-Time ExceptionsThe Complete Hierarchy of The Ice Run-Time Exceptions

33

Interface Semantics and ProxiesInterface Semantics and Proxies
● Building on the Clock example, we can create definitions for

a world-time server:
exception GenericError {
 string reason;
};
struct TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
};
exception BadTimeVal extends GenericError {};
interface Clock {
 idempotent TimeOfDay getTime();
 idempotent void setTime(TimeOfDay time) throws BadTimeVal;
};
dictionary<string, Clock*> TimeMap; // Time zone name to clock map
exception BadZoneName extends GenericError {};
interface WorldTime {
 idempotent void addZone(string zoneName, Clock* zoneClock);
 void removeZone(string zoneName) throws BadZoneName;
 idempotent Clock* findZone(string zoneName) throws BadZoneName;
 idempotent TimeMap listZones();
 idempotent void setZones(TimeMap zones);
};

34

The Proxy OperatorThe Proxy Operator
● addZone accepts a parameter of type Clock* and findZone returns a

parameter of type Clock*.
● Interfaces are types in their own right and can be passed as parameters. The *

operator is known as the proxy operator.
● Its left-hand argument must be an interface (or class) and its return type is a

proxy.
● A proxy is like a pointer that can denote an object.
● The semantics of proxies are very much like those of C++ class instance

pointers:
● A proxy can be null.
● A proxy can dangle (point at an object that is no longer there)
● Operations dispatched via a proxy use late binding: if the actual run-time type of the

object denoted by the proxy is more derived than the proxy’s type, the implementation
of the most-derived interface will be invoked.

● When a client passes a Clock proxy to the addZone operation, the proxy
denotes an actual Clock object in a server.

● The Clock Ice object denoted by that proxy may be implemented in the
same server process as the WorldTime interface, or in a different server
process.

35

Interface InheritanceInterface Inheritance

● Interfaces support inheritance.
● We could extend our world-time server to support the

concept of an alarm clock:
interface AlarmClock extends Clock {
 idempotent TimeOfDay getAlarmTime();
 idempotent void setAlarmTime(TimeOfDay alarmTime)
 throws BadTimeVal;
};

● AlarmClock is a subtype of Clock and an AlarmClock
proxy can be substituted wherever a Clock proxy is
expected.

● An AlarmClock supports the same getTime and
setTime operations as a Clock but also supports the
getAlarmTime and setAlarmTime operations.

36

Multiple InheritanceMultiple Inheritance

● We can construct a radio alarm clock as follows:
interface Radio {
 void setFrequency(long hertz) throws GenericError;
 void setVolume(long dB) throws GenericError;
};
enum AlarmMode { RadioAlarm, BeepAlarm };
interface RadioClock extends Radio, AlarmClock {
 void setMode(AlarmMode mode);
AlarmMode getMode();
};

37

Multiple InheritanceMultiple Inheritance

● Interfaces that inherit from more than one base interface
may share a common base interface.
interface B { /* ... */ };
interface I1 extends B { /* ... */ };
interface I2 extends B { /* ... */ };
interface D extends I1, I2 { /* ... */ };

38

Interface Inheritance LimitationsInterface Inheritance Limitations

● If an interface uses multiple inheritance, it must not inherit
the same operation name from more than one base
interface.

● The following definition is illegal:
interface Clock {
 void set(TimeOfDay time); // set time
};
interface Radio {
 void set(long hertz); // set frequency
};
interface RadioClock extends Radio, Clock { // Illegal!
 // ...
};

39

Implicit Inheritance from ObjectImplicit Inheritance from Object

● All Slice interfaces are ultimately derived from Object.

40

Interface InhertanceInterface Inhertance

● Because all interfaces have a common base interface, we
can pass any type of interface as that type.
interface ProxyStore {
 idempotent void putProxy(string name, Object* o);
 idempotent Object* getProxy(string name);
};

● Inheritance from type Object is always implicit. For example,
the following Slice definition is illegal:
● interface MyInterface extends Object { /* ... */ }; // Error!

41

Self-Referential InterfacesSelf-Referential Interfaces

● Proxies have pointer semantics, so we can define self-
referential interfaces.
interface Link {
 idempotent SomeType getValue();
 idempotent Link* next();
};

42

Empty InterfacesEmpty Interfaces

● The following Slice definition is legal:
● interface Empty {};

● The Slice compiler will compile this definition without
complaint. An interesting question is: “why would I need an
empty interface?” In most cases, empty interfaces are an
indication of design errors.
interface ThingBase {};
interface Thing1 extends ThingBase {
// Operations here...
};
interface Thing2 extends ThingBase {
// Operations here...
};

43

Interface Versus Implementation InheritanceInterface Versus Implementation Inheritance

● Slice interface inheritance applies only to interfaces.
● In particular, if two interfaces are in an inheritance relationship,

this in no way implies that the implementations of those
interfaces must also inherit from each other.

● You can choose to use implementation inheritance when you
implement your interfaces, but you can also make the
implementations independent of each other.

● Slice inheritance simply establishes type compatibility.
● It says nothing about how interfaces are implemented and,

therefore, keeps implementation choices open to whatever is
most appropriate for your application.

44

Forward DeclarationsForward Declarations

● Both interfaces and classes can be forward declared.
● Forward declarations permit the creation of mutually

dependent objects:
module Family {
 interface Child; // Forward declaration
 sequence<Child*> Children; // OK
 interface Parent {
 Children getChildren(); // OK
 };
 interface Child { // Definition
 Parent* getMother();
 Parent* getFather();
 };
};

45

Forward DeclarationsForward Declarations

● You cannot inherit from a forward-declared interface or
class until after its definition has been seen by the compiler:
interface Base; // Forward declaration
interface Derived1 extends Base {}; // Error!
interface Base {}; // Definition
interface Derived2 extends Base {};
 // OK, definition was seen

46

Type IDsType IDs
● Each user-defined Slice type has an internal type identifier,

known as its type ID.
● The type ID is simply the fully-qualified name of each type. For

example, the type ID of the Child interface in the preceding
example is ::Family::Children::Child.

● All type IDs for user-defined types start with a leading ::, so
the type ID of the Family module is ::Family (not Family).

● In general, a type ID is formed by starting with the global scope
(::) and forming the fully-qualified name of a type by
appending each module name in which the type is nested, and
ending with the name of the type itself; the components of the
type ID are separated by ::.

● The type ID of a proxy is formed by appending a * to the type
ID of an interface or class. For example, the type ID of a Child
proxy is ::Family::Children::Child*.

47

Type IDsType IDs

● The type ID of the Slice Object type is ::Ice::Object and
the type ID of an Object proxy is ::Ice::Object*.

● The type IDs for the remaining built-in types, such as int, bool,
and so on, are the same as the corresponding keyword.
● The type ID of int is int,
● The type ID of string is string.

● Type IDs are used internally by the Ice run time as a unique
identifier for each type.
● When an exception is raised, the marshaled form of the exception

that is returned to the client is preceded by its Type ID on the wire.
● The clientside run time first reads the Type ID and, based on that,

unmarshals the remainder of the data as appropriate for the type of
the exception.

● Type IDs are also used by the ice_isA operation

48

Operations on Operations on ObjectObject

● The Object interface has a number of operations. We
cannot define type Object in Slice because Object is a
keyword.

● The definition of Object would look like below if it were legal:
sequence<string> StrSeq;
interface Object { // "Pseudo" Slice!
 idempotent void ice_ping();
 idempotent bool ice_isA(string typeID);
 idempotent string ice_id();
 idempotent StrSeq ice_ids();
 // ...
};

49

ice_pingice_ping

● All interfaces support the ice_ping operation.
● That operation is useful for debugging

● It provides a basic reachability test for an object:
● If the object exists and a message can successfully be dispatched

to the object, ice_ping simply returns without error.
● If the object cannot be reached or does not exist, ice_ping

throws a run-time exception that provides the reason for the
failure.

50

ice_isAice_isA
● The ice_isA operation accepts a type identifier (such as

the identifier returned by ice_id) and tests whether the
target object supports the specified type, returning true if it
does. You can use this operation to check whether a target
object supports a particular type.

● Assume that you are holding a proxy to a target object of
type AlarmClock. Table below illustrates the result of
calling ice_isA on that proxy with various arguments.

51

Operations on Operations on ObjectObject

● ice_id
● The ice_id operation returns the type ID of the most derived

type of an interface.
● ice_ids

● The ice_ids operation returns a sequence of type IDs that
contains all of the type IDs supported by an interface. For
example, for the RadioClock interface, ice_ids returns a
sequence containing the type IDs

● ::Ice::Object, ::Times::Clock,
::Times::AlarmClock, ::Times::Radio, and
::Times::RadioClock.

52

Local TypesLocal Types
● In order to access certain features of the Ice run time, you must use APIs

that are provided by libraries.
● Instead of defining an API that is specific to each implementation language, Ice

defines its APIs in Slice using the local keyword.
● The advantage of defining APIs in Slice is that a single definition suffices to define

the API for all possible implementation languages.
● The actual language-specific API is then generated by the Slice compiler for each

implementation language.
● Types that are provided by Ice libraries are defined using the Slice local keyword.
module Ice {
 local interface ObjectAdapter {
 // ...
 };
};

● Any Slice definition (not just interfaces) can have a local modifier.
● If the local modifier is present, the Slice compiler does not generate marshaling

code for the corresponding type.
● A local type can never be accessed remotely because it cannot be transmitted between

client and server.

53

Local TypesLocal Types

● Local interfaces and local classes do not inherit from
Ice::Object.

● Instead, local interfaces and classes have their own,
completely separate inheritance hierarchy. At the root of this
hierarchy is the type Ice::LocalObject.

● You cannot pass a local interface where a non-local
interface is expected and vice-versa.

54

Slice for a Simple File SystemSlice for a Simple File System
module Filesystem {
 interface Node {
 idempotent string name();
 };
 exception GenericError {
 string reason;
 };
 sequence<string> Lines;
 interface File extends Node {
 idempotent Lines read();
 idempotent void write(Lines text) throws GenericError;
 };
 sequence<Node*> NodeSeq;
 interface Directory extends Node {
 idempotent NodeSeq list();
 };
};

	Introduction to PETSc 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

