
1

Lecture Material
Pointers
Linked list class
Parameter passing
Shallow and deep copying
Copy constructor
Assignment operator
Operator overloading

2

Pointers
Four attributes of a variable
 name
 type
 value
 location (address)

Pointer is a type of value
 stored in a variable
 is just a number!

Operator * means:
 take value stored in variable, and use it as address of another

variable
Operator & means:
 take address of variable (NOT the value of it)

int x = 5;

3

Pointers
Variable
 name, type, value, location (address)

 In program In memory, at runtime
Which variable at what address? How much
memory? Who decides?

location

001000int x = 5;

type

name

value

5

4

Pointers
What is the value of the following expressions? Are they all legal?
 x
 &x
 *x

 In program In memory, at runtime

location

001000int x = 5;

type

name

value

5

5

Pointers
What is the value of the following expressions? Are they all legal?
 x, &x, *x
 p, &p, *p
 q, &q, *q
 ip, &ip, *ip

 In program In memory, at runtime

int x=5;
char *p="hello";
char *q;
int *ip;
ip=&x;

001000 5 int x
001004 3000 char*p
001008 ? char*q
001012 ? int* ip
... ...
003000 hello\0

location value name

6

Function Pointers
int* f1(int*, const int*);
int* (*fp1)(int*, const int*);
int* (*f2(int))(int*, const int*);
int* (*(*fp2)(int))(int*, const int*);

fp1=f1;
fp1=&f1;
fp1=&fp1; /* wrong */
fp2=f2;
fp2=&f2;

int a,b,*c;

c=f1(&a,&b);
c=fp1(&a,&b);
c=(*fp1)(&a,&b);
c=*fp1(&a,&b); /* wrong */
c=(f2(3))(&a,&b);
c=(*f2(3))(&a,&b);
c=(fp2(3))(&a,&b);
c=(*fp2(3))(&a,&b);
c=(*(*fp2)(3))(&a,&b);

7

Class list
Unidirectional linked list

next=0x1234
val=1

class list
{
private:
 struct node
 {
 node *next;
 int val;
 };
 node * head;
};

next=0x1334
val=2

next=NULL
val=3

l
head

8

Class list - Constructor and Destructor

next=0x1234
val=1

class list
{
private:
 struct node
 {
 node *next;
 int val;
 };
 node * head;
public:
 list ();
 ~list ();
 void insert (int a);
}

next=0x1334
val=2

next=NULL
val=3

l
head

list::list()
{
 head = NULL;
}

list::~list()
{
 while(head)
 {
 node* t=head->next;
 delete head;
 head=t;
 };
}

9

Class list - Destructor

class list
{
private:
 struct node
 {
 node *next;
 int val;
 };
 node * head;
public:
 list ();
 ~list ();
 void insert (int a);
}

next=0x1334
val=2

next=NULL
val=3

l
head

list::list()
{
 head = NULL;
}

list::~list()
{
 while(head)
 {
 node* t=head->next;
 delete head;
 head=t;
 };
}

10

Class list - Destructor

class list
{
private:
 struct node
 {
 node *next;
 int val;
 };
 node * head;
public:
 list ();
 ~list ();
 void insert (int a);
}

next=NULL
val=3

l
head

list::list()
{
 head = NULL;
}

list::~list()
{
 while(head)
 {
 node* t=head->next;
 delete head;
 head=t;
 };
}

11

Class list - Destructor

class list
{
private:
 struct node
 {
 node *next;
 int val;
 };
 node * head;
public:
 list ();
 ~list ();
 void insert (int a);
}

l
head=NULL

list::list()
{
 head = NULL;
}

list::~list()
{
 while(head)
 {
 node* t=head->next;
 delete head;
 head=t;
 };
}

12

Class list - Insert

next=0x1234
val=1

class list
{
private:
 struct node
 {
 node *next;
 int val;
 };
 node * head;
public:
 list ();
 ~list ();
 void insert (int a);
}

next=0x1334
val=2

next=NULL
val=3

l
head

void list::insert(int a)
{
 node* t=new node;
 t->next=head;
 head = t;
 head->val = a;
}

next=?
val=?

13

Class list - Insert

next=0x1234
val=1

next=0x1334
val=2

next=NULL
val=3

l
head

class list
{
private:
 struct node
 {
 node *next;
 int val;
 };
 node * head;
public:
 list ();
 ~list ();
 void insert (int a);
}

void list::insert(int a)
{
 node* t=new node;
 t->next=head;
 head = t;
 head->val = a;
}

next=0x1134
val=?

14

Class list - Insert

next=0x1234
val=1

next=0x1334
val=2

next=NULL
val=3

l
head

class list
{
private:
 struct node
 {
 node *next;
 int val;
 };
 node * head;
public:
 list ();
 ~list ();
 void insert (int a);
}

void list::insert(int a)
{
 node* t=new node;
 t->next=head;
 head = t;
 head->val = a;
}

next=0x1134
val=1

15

Class list - Iterator

next=0x1234
val=1class list

{
private:
...
 node * head;
 node * current;
public:
...
 void goToHead ();
 int getCurrentData();
 void advance ();
 bool moreData ();
};

next=0x1334
val=2

next=NULL
val=3

l
head

current

#include <iostream>
using namespace std;
#include "list.h"
int main()
{
 list l;
 l.insert(3);
 l.insert(2);
 l.insert(1);
 l.goToHead();

while(l.moreData())
 {
 int val;
 val=l.getCurrentData();
 cout << val << " ";
 l.advance();
 }
 cout << endl;
};

16

Passing of Function Parameters
Passing by value
 formal parameters are the copies of actual parameters

Passing by reference
 formal parameters are the references to the actual parameters, i.e. all

operations on formal parameters refer to actual parameters

C and C++ by default pass all arguments by value

void d1(int x)
{ x = 10; }
void d2(int *p)
{ (*p) = 10;}
void d3(int *p)
{ p = new int(4);}

void main() {
int y = 2;
d1(y); cout << y;
d2(&y); cout << y;
d3(&y); cout << y;

}

17

Passing of Function Parameters
By value
 value of parameter is passed to function

By reference
 reference of parameter is passed to function, thus value can be modified

By constant reference
 reference of parameter is passed to function for efficiency reasons, but value cannot be

modified (verified by compiler)

void f1(int x) { x = x + 1; }
void f2(int& x) { x = x + 1; }
void f3(const int& x) { x = x + 1; }
void f4(int *x) { *x = *x + 1; }
void main() {
int y = 5;
f1(y);
f2(y);
f3(y);
f4(&y);

}

• Which is which in this example?
• What is the value of y after each

call?
• On the last one (f4), what is being

passed as an argument? Is it passed
by value or reference?

• Can you pass a pointer by reference?

18

Passing Parameters to Functions
Objects are no different than anything else passed to a function
 Classes provide support to modify the behavior

Three ways of doing it: by value, by reference, by constant
reference
By Value
 Copy constructor will be used on the argument

By Reference
 A reference to the object will be passed

By Constant Reference
 A constant reference will be passed. Only const methods in the class can be

called on this argument.

19

Passing an Object as a Parameter
When an object is used as an actual parameter in a function call,
the distinction between shallow and deep copying can cause
seemingly mysterious problems.

void
PrintList (list & toPrint, ostream & Out)
{
 int nextValue;
 Out << "Printing list contents: " << endl;
 toPrint.goToHead ();
 if (!toPrint.moreData ())
 {
 Out << "List is empty" << endl;
 return;
 }
 while (toPrint.moreData ())
 {
 nextValue = toPrint.getCurrentData ();
 Out << nextValue << " ";
 toPrint.advance ();
 }
 Out << endl;
}

• The list object is passed by
reference because it may be
large, and making a copy
would be inefficient.

• What if we used pass by
constant reference?

• What if we used pass by
value?

20

Passing Objects
In the previous example, the object parameter
cannot be passed by constant reference because
the called function does change the object (the
current position pointer)
However, since constant reference is not an
option here, it may be preferable to eliminate the
chance of an unintended modification of the list
and pass the list parameter by value
 This solution will be inefficient (Why?)
 Might cause problem if you don’t have a copy

constructor (Why?)

21

Passing Objects by Value
void
PrintList (list toPrint, ostream & Out)
{

// same implementation
}
void main()
{

list BigList;
// initialize BigList with some data nodes
PrintList(BigList, cout);

}

next=0x1234
val=1

next=0x1334
val=2

next=NULL
val=3

l
head

l
head

BigList

toPrint
• We have the aliasing problem
• BigList and toPrint are the same object.
• The consequences are even worse…

22

When PrintList() terminates, the lifetime of toPrint comes to an
end and its destructor is automatically invoked:

But of course, that’s the same list that BigList has created. So,
when execution returns to main(), BigList will have been
destroyed, but BigList.Head will still point to that deallocated
memory

Passing Objects by Value

next=0x1234
val=1

next=0x1334
val=2

next=NULL
val=3

l
head

l
head

BigList

toPrint
• Destructing toPrint causes the deallocation of the list of

nodes to which toPrint.Head points.

23

Assignment of Objects
A default assignment operation is provided for objects (just as for
struct variables)

The default assignment operation simply copies values of the data
members from the “source” object into the corresponding data
members of the “target” object
This is satisfactory in many cases. However, if an object contains
a pointer to dynamically allocated memory, the result of the
default assignment operation is usually not desirable…

class DateType {
 public:
 // constructor
 DateType();
 DateType(int newMonth, int newDay, int newYear);
 ...
};
. . .
DateType A(1, 22, 2002);
DateType B;
B = A; // copies the data members of A into B

24

Problems with Assignment of Pointers
class Wrong {
private:

int *table; // some data here
public:

// constructor
Wrong() {table = new int[1000]; }
~Wrong() { delete [] table; }

};
. . .
Wrong A;
Wrong B;
B = A; // copies the data members of A into B

• What type of data does Wrong store?
• Is int *table the same as int table[]?
• What happens when it is copied?
• What problems do we encounter?
• How can it be solved?

A B

table ?

25

Two types of copying objects with pointer members and its contents when they are
being assigned
Shallow Copy
 Copy all member variables (including the pointers)
 This results in copying of the pointers but not what the pointers point to

Deep Copy
 New memory allocation for all pointers
 Copy contents pointed by pointers to new locations
 Copy remaining member variables (non pointers)

Assignment: Types of Copying

A B
table

A B
table table

26

Problems with Shallow Copying
 list myList;

myList.insert (3);
myList.insert (2);
myList.insert (1);

next=0x1234
val=1

next=0x1334
val=2

next=NULL
val=3

l
head

myList

27

Problems with Shallow Copying
 list myList;

myList.insert (3);
myList.insert (2);
myList.insert (1);
list anotherList;
anotherList=myList;

next=0x1234
val=1

next=0x1334
val=2

next=NULL
val=3

l
head

myList

l
head

anotherList

28

Deep Copying Essentials
When an object contains a pointer to dynamically
allocated data, define the assignment operation to make a
deep copy
 Define assignment operator for the class in question

AType& AType::operator=(const AType& otherObj)
 In the assignment operator take care of the following special

situations
 Are you assigning something to itself? For example A=A:

if (this == &otherObj) // if true, do nothing
 Call the “delete” operation on the receiving object.

delete this->...
 Allocate new memory for values being copied
 Copy the assigned values
 Return *this

29

Copy Constructor vs. Assignment Operator
Copy constructor is used to create a new object from scratch
It has the following signature:
AType::AType(const AType& otherObj)

Is simpler than the assignment operator - does not have to check
the assignment to itself neither free the previous contents.
Is used to copy actual parameter to formal parameter when
passing by value
When creating a new object, it can be initialized with the existing
object of the same type. Copy constructor is invoked then.

int main() {
list a;
//...
list b(a); //copy constructor called
list c=a; //copy constructor called

};

30

Anonymous Objects
An anonymous object is a nameless (i.e. unnamed) object
 Object is created but there is no named variable holding it

Useful:
 for temporary use (parameter in a method call, return, expression term)
 as default value for an object parameter

Anonymous objects are created by a direct invocation of a class constructor
Consider a method receiving an Address object

Argument could be passed as follows...

Instead of ...

void Person::setAddress(Address addr);

Person joe;
joe.setAddress(Address("Disk Drive"...));

Person joe;
Address joeAddress("Disk Drive"...);
joe.setAddress(joeAddress);

31

Example: Anonymous Objects as Parameters
Without anonymous objects, we have a mild
mess:

With anonymous objects we reduce pollution of
the local namespace:

Name JBHName("Joe", "Bob", "Hokie");
Address JBHAddr("Oak Bridge Apts", "#13",
"Blacksburg","Virginia", "24060");
Person JBH(JBHName, JBHAddr, MALE);
. . .

Person JBH(Name("Joe", "Bob", "Hokie"),
 Address("Oak Bridge Apts", "#13",
 "Blacksburg","Virginia", "24060"),
 MALE);
. . .

32

Example: Anonymous Objects as Defaults
Used as default parameter values, anonymous
objects provide a relatively simple way to control
initialization and reduce class interface clutter:
Person::Person(Name N = Name("I", "M", "Nobody"),
Address A = Address("No Street", "No Number",
"No City", "No State", "00000"), Gender G =
GENDERUNKNOWN) {
Nom = N;
Addr = A;
Spouse = NULL;
Gen = G;

}

33

Different Ways to Create Objects
Automatic variables
Atype a; // default constructor

Automatic variables with arguments
Atype a(3); // constructor with (int) signature

Passing arguments to functions by value
void f(Atype b) {...}
Atype a; // default constructor
...
f(a); // copy constructor

Assigning values to variables
Atype a,b;
...
a=b; // assignment operator

Initialization of new objects
Atype b; // default constructor
...
Atype a=b; // copy constructor (NOT assignment operator)

Returning values from functions
Atype f() {
 Atype a; // default constructor
 ...
 return a; // copy constructor
}

34

Features of a Solid C++ Class
Explicit default constructor
 Guarantees that every declared instance of the class will be

initialized in some controlled manner
ClassName::ClassName() { ... }

If objects of the class contain pointers to dynamically-
allocated storage:
 Define an explicit destructor

 Prevents memory waste. Release resources when object is destroyed.
ClassName::~ClassName() { ... }

 Define an assignment operator
 Implicitly used when an object is assigned to another. Prevents

destructor aliasing problem.
ClassName & ClassName::operator=(const ClassName& obj) { ... }

 Define a copy constructor
 Implicitly used when copying an object during parameter passing or

initialization. Prevents destructor aliasing problem.
ClassName::ClassName(const ClassName& obj) { ... }

35

Overloading
Overloading - having multiple “definitions” for the same
name
 Multiple functions under just one name

In C++, overloaded names are differentiated by number
of arguments and type of arguments
 (and inheritance)

This is called the signature of a function
 return types are not considered, so this would be illegal:

 double fromInt(int x)
 float fromInt(int x)

Most common use of overloading is for operators

36

Overloading & Polymorphism
Overloading is considered “ad-hoc” polymorphism.
Can define new meanings (functions) of operators for
specific types.
Compiler recognizes which implementation to use by
signature (the types of operands used in the expression).
Overloading is already supported for many built-in types
and operators:
 17 * 42
 4.3 * 2.9
 cout << 79 << 'a' << "overloading is profitable"
<< endl;

The implementation used depends upon the types of
operands.

37

Reasons for Overloading
Support natural, suggestive usage:
 Complex A(4.3, -2.7), B(1.0, 5.8);
 Complex C;
 C = A + B; // '+' means addition for this type
as well as int, etc.

Semantic integrity (assignment for objects with
dynamic content must ensure a proper deep copy
is made).
Able to use objects in situations expecting
primitive values

38

Operators That Can Be Overloaded
Only the following operator symbols can be overloaded:

Operators =, ->, [], () must be non-static members

delete []deletenew[]new()[]->

,->*--++||&&>=

<=!===<<=>>=>><<

|=&=^=%=/=*=-=

+=><=!~|

&^%/*-+

39

Operator Overloading Guidelines
Avoid violating expectations about the operator:

Provide a complete set of properly related operators: a =
a + b and a+= b have the same effect and it makes sense
to support both if either is supplied.
Define the operator overload as a class member unless
it's necessary to do otherwise.
If the operator overload cannot be a class member, then
make it a friend rather than add otherwise unnecessary
member accessors to the class.

Complex Complex::operator~() const {
return (Complex(Imag, Real));

}

40

Syntax for Overloading Operators
Declared and defined like other methods or functions, except that
the keyword operator is used.
As method of the Name class:
bool Name::operator== (const Name& RHS) {

return ((First == RHS.First) &&

(Middle == RHS.Middle) &&

(Last == RHS.Last));

}

As nonmember function:
bool operator==(const Name& LHS, const Name& RHS) {

return ((LHS.First == RHS.First) &&

(LHS.Middle == RHS.Middle) &&

(LHS.Last == RHS.Last));

}

It is probably most natural here to use the member operator
approach.

41

Using Overloaded Operators
If Name::operator== defined as member
function, then
nme1 == nme2

is the same as
nme1.operator==(nme2)

If operator== defined as nonmember function ,
then
nme1 == nme2

is the same as
operator==(nme1, nme2)

42

Binary Operator as a Member
A class member subtract operator for Complex
objects:

To be a class member, the left operand of an
operator must be an object of the class type:

Complex X(4.1, 2.3), Y(-1.2, 5.0);
int Z;

OK: X + Y;
Not OK: Z + X;

It is typical to pass by constant reference to avoid
the overhead of copying the object.

Complex Complex::operator-(const Complex& RHS) const {
return (Complex(Real - RHS.Real, Imag - RHS.Imag));

}

43

Binary Non-Member Operators
A non-member subtract operator for Complex objects:

As a non-member, this subtract operator must use the public
interface to access the private data members of its parameters…
 … unless the class Complex declares it to be a friend.

If an operator or function is declared to be a friend of a class then
it can access private members as if it were a member function.

Complex operator-(const Complex& LHS, const Complex& RHS) {
return (Complex(LHS.getReal() - RHS.getReal(),

LHS.getImag() - RHS.getImag()));
}

class Complex
{

...
 friend Complex operator+ (const Complex&, const Complex&);
...

};

44

Unary Operators
A negation operator for the Complex class:

Note that a unary member operator takes NO
parameters

Complex Complex::operator-() const {
return (Complex(-Real, -Imag));

}
Complex A(4.1, 3.2); // A = 4.1 + 3.2i
Complex B = -A; // B = -4.1 - 3.2i

45

Pre- and Postincrementation

Preincrementation operator

Postincrementation operator

class Value {
private:

int x;
public:

Value(int i = 0) : x(i) {}
int get() const { return x; }
void set(int x) (this->x = x; }
Value& operator++();
Value operator++(int Dummy);

}

Value& Value::operator++() {
x = x + 1;
return *this;

}

Value Value::operator++(int Dummy) {
x = x + 1;
return Value(x-1); // return previous value

}

46

Multiple Overloading
We can have two addition operators in a class:

This lets us write mixed expressions, like:

Signature of function used to resolve which is
used:

Complex Complex::operator+(double RHS) const {
return (Complex(Real + RHS, Imag));

}
Complex Complex::operator+(Complex RHS) const {

return (Complex(Real + RHS.Real, Imag + RHS.Imag));
}

Complex X(4.1, 2.3);
double R = 1.9;
Complex Y = X + R; // Y.Real is 6.0

Complex Z = Y + R; // complex plus double
Complex W = Y + X; // complex plus complex

47

Multiple Overloading
Constructor can be used as a conversion operator

Will not work, if left operand is double

Better to implement binary operator as
nonmember

Complex Complex::operator+(Complex RHS) const {
return (Complex(Real + RHS.Real, Imag + RHS.Imag));

}
Complex:: Complex (double co)
{

Real = co;
Imag = 0;

};

Complex X(4.1, 2.3);
double R = 1.9;
Complex Y = X + R; // Y = X.operator+(Complex(R));

Complex X(4.1, 2.3);
double R = 1.9;
Complex Y = R + X; // syntax error

48

Multiple Overloading
Nonmember will work also when double is at the left

When to implement operators as nonmembers
 When working with basic data types,
e.g. Complex operator+(int LHS, const Complex& RHS);
 When we cannot modify the original class,
e.g. ostream

friend Complex operator+(Complex LHS, Complex RHS) {
return (Complex(LHS.Real + RHS.Real, LHS.Imag + RHS.Imag));

}

Complex X(4.1, 2.3);
double R = 1.9;
Complex Y = X + R; // Y = operator+(X,Complex(R));
Complex Z = R + X; // Y = operator+(Complex(R),X);

49

Provide a Reasonable Set of Operators
In some cases, whole categories of operators
make sense for a type.
For instance, it makes sense to overload all of the
arithmetic operators for the class Complex. It also
makes sense to overload all six relational
operators for the class Name.
Often the implementation of one operator can
"piggyback" off of another:

Complex operator + (Complex s1, Complex s2)
{
 Complex n (s1);
 return n += s2;
}

50

Stream I/O Operators
We do not have access to the istream or ostream class code, so we
cannot make overloadings of << or >> members of those classes.
We also cannot make them members of a data class because the
first parameter must then be an object of that type.
Therefore we must define operator<< as non-member function.
However, it must access private members of the data class, so we
will typically make it a friend of that class. The alternative would
be to have accessor functions for all the data members that will be
written, and that is frequently unacceptable.
The general signature will be:
ostream& operator<<(ostream& Out, const Data& toWrite)

51

operator<< for Complex Objects
This overloaded operator<< will write a nicely
formatted Complex object to any output stream:

ostream& operator<<(ostream& Out, const Complex& toWrite) {
const int Precision = 2;
const int FieldWidth = 8;
Out << setprecision(Precision);
Out << setw(FieldWidth) << toWrite.Real;
if (toWrite.Imag >= 0)

Out << " + ";
else

Out << " - ";
Out << setw(FieldWidth) << fabs(toWrite.Imag);
Out << "i";
Out << endl;
return Out;

}

52

operator>> for Complex Objects
This overloaded operator>> will read a complex
number formatted in the manner used by
operator<<:

istream& operator>>(istream& In, Complex& toRead) {
char signOfImag;
In >> toRead.Real;
In >> signOfImag;
In >> toRead.Imag;
if (signOfImag == '-')
 toRead.Imag = -toRead.Imag;
In.ignore(1, 'i');
return In;

}

Of course, this depends on
knowing exactly how the
Complex objects are formatted in
the input stream.
We could make this a lot more
complicated if we had multiple
formats to deal with.

53

Indexing Operator Overloading

Provides expected functionality, allowing us to write:
vector a(10);
a[5]=10;
cout << a[4]<<endl;

class vector
{

int *data;
unsigned int size;

public:
vector(int n); //creates n-element vector
~vector();
int& operator[] (unsigned int pos);
int operator[] (unsigned int pos) const
//copy constructor, assignment operator, ...

};
int& vector::operator[] (unsigned int pos)
{
 if (pos >= size)
 abort ();
 return data[pos];
}
int vector::operator[] (unsigned int pos) const
{
 if (pos >= size)
 abort ();
 return data[pos];
}

54

Relational Operators in General
If objects of a class will routinely be stored in a container, the
class should provide overloadings for at least some of the
relational operators.
In order to perform searches and sorts, the container object must
be able to compare the stored objects. There are several
approaches:
 use accessor members of the stored objects and compare data members

directly
 use comparison member functions of the stored objects, as opposed to

operators, to compare the data members
 use overloaded relational operators provided by the stored objects

The first requires the container to know something about the types
of the data members being compared.
The second requires the stored objects to provide member
functions with constrained interfaces.
The third allows natural, independent design on both sides.

