
Object-Oriented
Programming in C++

Grzegorz Jabłoński

Department of Microelectronics
and Computer Science (K-25)

Building B18 (next to the library)

gwj@dmcs.p.lodz.pl

mailto:gwj@dmcs.p.lodz.pl
mailto:gwj@dmcs.p.lodz.pl
mailto:gwj@dmcs.p.lodz.pl
mailto:gwj@dmcs.p.lodz.pl
mailto:gwj@dmcs.p.lodz.pl
mailto:gwj@dmcs.p.lodz.pl
mailto:gwj@dmcs.p.lodz.pl

Syllabus

http://neo.dmcs.p.lodz.pl/oopc
 General overview of C++
 Classes
 Fields and methods
 Operator overload
 Inheritance
 Virtual functions
 Templates
 Exceptions
 Class hierarchies
 C++ standard library (STL)

Lecture Material

Goals for design

Design paradigms

Object-oriented design process

Object-oriented design basics
 Abstraction
 Interfaces
 Responsibilities
 Collaborators

Example
 Identifying objects
 Identifying relationships

4

Software Engineering Goals for Design

Reusability
 Develop components that can be reused in many systems

portable and independent
 "plug-and-play" programming (libraries)

Extensibility
 Support for external plug-ins (e.g., Photoshop)

Flexibility
 Design so that change will be easy when data/features are

added
 Design so that modifications are less likely to break the system
 Localize effect of changes

5

Design Process
Goal: Create a system

In general, the design process is:
 Divide/Describe system in terms of components
 Divide/Describe components in terms of sub-components

Concept of abstraction
 Essential for process, hides details of components that are irrelevant to the

current design phase

Component identification is top-down
 Decompose system into successively smaller, less complex components

Integration is bottom-up
 Build target system by combining small components in useful ways

Design is applied using a paradigm: procedural, modular, object-
oriented

6

Abstraction

A named collection of attributes and behavior
relevant to modeling a given entity for some
particular purpose
Desirable Properties:
 Well named name conveys aspects of the

abstraction
 Coherent makes sense
 Accurate contains only attributes modeled

entity contains
 Minimal contains only attributes needed

for the purpose
 Complete contains all attribute/behavior

needed for the purpose

7

Forms of Abstraction
Functions (procedural design)
 Define set of functions to accomplish task
 Pass information from function to function
 Results in a hierarchichal organization of functions

Modules (modular design)
 Define modules, where each has data and procedures
 Each module has a public and a private section
 A module groups related data and/or procedures
 Works as a scoping mechanism

Classes/Objects (object-oriented design)
 Abstract Data Types
 Divide project in set of cooperating classes
 Each class has a very specific functionality
 Classes can be used to create multiple instances of objects

8

Procedural Paradigm

Apply procedural decomposition
 divide the problem into a sequence of simpler sub-

problems to be solved independently

The resulting program will consist of a sequence
of procedure calls
The designer thinks in terms of tasks and sub-
tasks, identifying what must be done to whom
Traditional procedural languages: COBOL,
FORTRAN, Pascal, C
Design notations: structure charts, dataflow
diagrams

9

Problems in Procedural Development

The result is a large program consisting of many small
procedures
There is no natural hierarchy organizing those
procedures
It is often not clear which procedure does what to what
data
Control of which procedures potentially have access to
what data is poor
These combine to make it difficult to fix bugs, modify
and maintain the system
The natural interdependence of procedures due to data
passing (or the use of global data, which is worse) makes
it difficult to reuse most procedures in other systems
High dependence between functions (high coupling)

10

Procedural Design

Consider a domain that deals with geometry (shapes,
angles, addition of points, etc.)

A procedural design would have:

Notice that the central aspect of the design is the
procedure, and not the data
 As a matter of fact, there is no data representation

void distance(int x1, int y2, int x2, int y2, float& distance);

void angle2radian(float degree, float& radian);

void radian2angle(float radian, float& degree);

void circlearea(int centerx, int centery, int radius, float& area);

void squarearea(int x1, int x2, int width, int height, float &area);

void squareperimeter(int x1, int x2, int width, int height, float &prm);

...

11

Modular Programming

This is a relatively simple extension of the purely
procedural approach

Data and related procedures are collected in some
construct, call it a module

The module provides some support for hiding its
contents

In particular, data can only be modified by procedures in
the same module

The design process now emphasizes data over
procedures. First identify the data elements that will be
necessary and then wrap them in modules

Typical languages: Ada 83, Modula

12

Problems with Modular Programming

Modules do solve most of the (noted) difficulties
with procedural programming

Modules allow only partial information hiding
(when compared with OOP)

Cannot have multiple copies of a module, thus
restricting your design solutions

13

For the same domain as before, a modular design would
have:

Notice that the central aspect of the design is still
procedure, but there is some data representation
 Also note that the concept of “Point” is not introduced because

it is not needed for the design and it does not provide any
advantage to have it

Modular Design

// Geometry Module
struct Circle { int centerx, centery; int radius; };
struct Square { int x1, x2, width, height; };
Circle *NewCircle(int center, int radius);
Square *NewSquare(int x1, int x2, int width, int height);
float CircleArea(Circle& c);
float SquareArea(Square& s);
float SquarePerimeter(Square& s);
void distance(int x1, int y2, int x2, int y2, float& distance);
void angle2radian(float degree, float& radian);
void radian2angle(float radian, float& degree);
...

14

Object-Oriented Paradigm

Think of building the system from parts, similar to
constructing a machine
Each part is an object which has its own attributes and
capabilities and interacts with other parts to solve the
problem
Identify classes of objects that can be reused
Think in terms of objects and their interactions
At a high level, think of an object as a thing-in-its-own-
right, not of the internal structure needed to make the
object work
Typical languages: Smalltalk, C++, Java, Eiffel

15

Why Object-Oriented?

First of all, OO is just another paradigm... (and there will
be more)
Any system that can be designed and implemented using
OO can also be designed and implemented in a purely
procedural manner.
But, OO makes some things easier
During high-level design, it is often more natural to think
of the problem to be solved in terms of a collection of
interacting things (objects) rather than in terms of data
and procedures
OO often makes it easier to understand and forcibly
control data access
Objects promote reusability

16

OO Design

For the same domain as before, an OO design would
have:

Notice that the central aspect of the design is now the
data, the operations are defined together with the data

class Point { ...
 float distance(Point &pt);
};
class Shape { float Area(); float Perimeter(); Point center(); }
class Circle : Shape {
 private: Point center; int radius;
 public: // constructors, assignment operators, etc...
 float Area(); // calc my area
 float Perimeter();
};
class Square : Shape {
 private: Point anchor; int width, height;
 public: // constructors, assignment operators, etc...
 float Area();
 float Perimeter();
};
...

17

Design Strategies in OO Development
Abstraction modeling essential properties

Separation treat what and how independently

Composition building complex structures from simpler ones

Generalization identifying common elements

abstraction

separation

composition

generalization

objects
classes

inheritance
templates

design
patterns

reusability

extensibility

flexibility

Design
Strategies

Software
Structures

Software
Engineering Goals

18

Mapping Abstraction to Software

entity

attributes

behavior

real-world abstraction software

{data, data,…}

{method, method,…}

19

Mapping Abstraction to Software in OO

entity

attributes

behavior

real-world abstraction OO software

{data, data,…}

{method, method,…}

20

Separation of Interface from Implementation

In programming, the independent specification of an
interface and one or more implementations of that
interface

 What is to be done

 vs.

 How it is to be done

Another advantage of this is that we can program
depending on the interface without worrying about the
implementation
 Contract-based programming
 Allows abstraction in the design process

Interface

Implementation

visible

hidden

21

General Structure of a Class
Class
 a named software representation for an abstraction that separates the

implementation of the representation from the interface of the
representation

A class models an abstraction, which models an entity (possibly
“real”)

A class represents all members of a group of objects (“instances”
of the class)

A class provides a public interface and a private implementation

The hiding of the data and “algorithm” from the user is important.
Access restrictions prevent idle, erroneous, or malicious
alterations public

private
{data, data, ….}

{method,method, …}

typical
organization

22

Object-Oriented Design Process

Steps to be carried out to design in OO terms
Restricting the domain: Use Cases (Scenarios,
Descriptions of use)
 Identify objects (entities from the domain, data)
 Identify responsibilities (actions, behavior)

How to define behavior
 Identify collaborations

 Decide whether behavior is accomplised by a single class or through
the collaboration of a number of "related" classes

 Static behavior
 Behavior always exists

 Dynamic behavior
 Depending of when/how a behavior is invoked, it might or might not be

legal

 Identify relationships between objects
 Composition by association, aggregation, links, others

23

Getting Started

In the beginning… there is a specification:

The specification is usually somewhat
unsatisfactory

Frequently important details are missing

Often, much is said in the specification that is
unimportant

Specification:

Design a music catalog system. The system must support
adding recordings, storing information about artist, album title,
song title, song composer, etc. The user of the system should be
able to search the collection for any information. It should also
allow the user to browse the collection.

24

Identifying the Objects

We must:
 Identify potential objects from the specification
 Eliminate phony candidates
 Determine how the legitimate objects will interact
 Extrapolate classes from the objects

This process:
 Requires experience to do really well
 Requires guidelines, none of which are entirely adequate
 Often uses several approaches together
 Should lead to too many rather than too few potential objects

25

Several Approaches
Abbott and Booch suggest:
 use nouns, pronouns, noun phrases to identify objects and classes
 singular -> object, plural -> class
 not all nouns are really going to relate to objects

Coad and Yourdon suggest:
 identify individual or group "things" in the system/problem

Ross suggests common object categories:
 people
 places
 things
 organizations
 concepts
 events

26

Objects and the Problem Domain

What constitutes a "potential object" depends on
the problem domain

Discuss with a domain expert — a person who
works in the domain in which the system will be
used

Try to identify objects from the way that the
users/experts think about the system/problem

Specification:

Design a music catalog system. The system must support
adding recordings, storing information about artist, album title,
song title, song composer, etc. The user of the system should be
able to search the collection for any information. It should also
allow the user to browse the collection.

27

Eliminate "false" Objects

An object should:
 be a real-world entity
 be important to the discussion of the requirements
 have a crisply defined boundary
 make sense; i.e., the attributes and behaviors should all be

closely related

Danger signs:
 class name is a verb
 class is described as performing something
 class involves multiple abstractions
 class is derived from another, but has few features itself
 class has only one public method
 class has no methods

28

Example: Music System

Looking for nouns

First cut:
 music
 catalog (collection)
 system
 user
 song
 title
 artist
 recordings (album)
 composer
 information

Specification:

Design a music catalog system. The system must support
adding recordings, storing information about artist, album
title, song title, song composer, etc. The user of the system
should be able to search the collection for any information. It
should also allow the user to browse the collection.

• Which of these are important
to consider in our design?

• Real-world entity, important
for problem, clearly definable?

29

Example: Music System

Reject (for now)
 music (refers to the type of information stored, but nothing

musical stored)
 catalog (collection, system) - all the same
 information - general name to refer to pieces of the collection
 user - external to the system, plays a role in the system
 song, title, artist, composer
 recordings (album)

Data structure support required... (organization of
elements in domain)
 Catalog has a collection of recordings
 Recording has title, artist name, list of songs
 Song has title, composer name, artist name

• Do we need to consider “title” a class?
• How about a person’s name?

30

Example: Music System

What about overall control?
 The primary controller may be either procedural or an

object
 Collection

 User uses Catalog, which contains the collection, a list of
Recording objects

 (somehow) provides support for each of the required
actions

 However, the Collection should respond to
instructions (events), not seek them out. In the
implementation, we must parse an input script, or
have a GUI. Either way, that's not part of the
Collection, although it would interact with it

31

General Structure of an Object
Object:
 a distinct instance of a given class that encapsulates its implementation details and

is structurally identical to all other instances of that class

An object “encapsulates” its data and the operations that may be performed on
that data

An object’s private data may only be accessed via the member functions
defined within the object’s class

An object hides details of representation and implementation from the user

code

code

data

method

method

interface implementation

	Programowanie obiektowe
	Program przedmiotu
	Dzisiejszy wykład
	Cele projektowania
	Proces projektowania
	Abstrakcja
	Formy abstrakcji
	Paradygmat proceduralny
	Problemy podejścia proceduralnego
	Przykład podejścia proceduralnego
	Programowanie modularne
	Problemy w projektowaniu modularnym
	Przykład projektowania modularnego
	Paradygmat obiektowy
	Dlaczego podejście obiektowe?
	Przykład projektu obiektowego
	Strategie projektowe w podejściu obiektowym
	Odwzorowanie abstrakcji i oprogramowania
	Odwzorowanie abstrakcji i oprogramowania (OO)
	Oddzielenie interfejsu od implementacji
	Ogólna struktura klasy
	Proces projektowania obiektowego
	Początek
	Identyfikacja obiektów
	Kilka podejść do problemu
	Obiekty i dziedzina problemu
	Eliminacja "fałszywych" obiektów
	Przykład: katalog płyt
	Slajd 29
	Slajd 30
	Ogólna struktura obiektu

