Lecture Material

Class hierarchies and casting

Run Time Type Information (RTTI)
Member pointers

Operators new and delete
Temporary objects

Casting

B A plausible use of the /val boxes would be to hand them
to a system that controlled a screen and have that system
hand objects back to the application program whenever
some activity had occurred.

B User interface system will not know about our
Ival boxes. The system’s interfaces will be specified in
terms of the system’s own classes and objects rather than
our application’s classes.

H We lose information about the type of objects passed to
the system and later returned to us.

H We need the operation allowing to recreate lost
information about the type of an object.

Operator dynamic _cast

B Operator dynamic_cast returns a valid pointer if the object is of the expected
type and a null pointer if it isn’t.

void my event handler (BBwindow* pw)
{
if (Ival_box* pb = dynamic_ cast<Ival_ box*>(pw))
// does pw point to an Ival box?
pb->do_something()
else {
// Oops! unexpected event

pb > Iva]_b()x BBWINAOW <€reecererarans pW
Ival slider BBslider

”
s
s
s

BB 1val slider
B Casting from a base class to a derived class is often called a downcast because

of the convention of drawing inheritance trees growing from the root down.
Similarly, a cast from a derived class to a base is called an upcast. A cast that
goes from a base to a sibling class, like the cast from BBwindow to Ival box, is
called a crosscast.

Operator dynamic _cast

H The dynamic cast operator takes two operands, a type bracketed
by < and >, and a pointer or reference bracketed by (and).

H When using the conversion
dynamic cast<T*>(p)

if p 1s a pointer to 7 or an accessible base class of T, the result 1s
exactly as if we had simply assigned ptoa 7' *, e.g.:

class BB _ival slider : public Ival slider, protected BBslider {

/] ...
}i
void f(BB ival slider* p)
{
Ival slider* pil = p; // ok
Ival slider* pi2 =dynamic cast<Ival slider*>(p) ; // ok
BBslider* pbbl =p; // error: BBslider is a protected base
BBslider* pbb2 = dynamic_cast<BBslider*>(p) ; // ok: pbb2 becomes 0

}

Operator dynamic _cast

H The previous example 1s the uninteresting case. However, it 1s
reassuring to know that dynamic cast doesn’t allow accidental
violation of the protection of private and protected base classes.

H The purpose of dynamic cast is to deal with the case in which the
correctness of the conversion cannot be determined by the
compiler. In that case,

dynamic_cast<T*>(p)

looks at the object pointed to by p (if any). If that object 1s of class
T or has a unique base class of type 1', then dynamic cast returns
a pointer of type T * to that object; otherwise, 0 1s returned.

H If the value of p is 0 , dynamic cast <T *>(p) returns 0.

H Note the requirement that the conversion must be to a uniquely
1dentified object. It 1s possible to construct examples where the
conversion fails and 0 is returned because the object pointed to by
p has more than one subobject representing bases of type T.

Operator dynamic _cast

B A dynamic cast requires a pointer or a reference

to a polymorphic type to do a downcast or a
crosscast.

class My slider: public Ival slider { // polymorphic base
// (Ival slider has virtual functions)

// ...
}i
class My date : public Date { // base not polymorphic
// (Date has no virtual functions)

/...
}i
void g(Ival box* pb, Date* pd)
{
My slider* pdl = dynamic_cast<My slider*>(pb) ; // ok
My date*pd2 =dynamic cast<My date*>(pd) ; // error: Date not polymorphic
}

Operator dynamic _cast

H Requiring the pointer’s type to be polymorphic simplifies the
implementation of dynamic cast because it makes it easy to find a
place to hold the necessary information about the object’s type.

H A typical implementation will attach a "type information object"
to an object by placing a pointer to the type information in the
object’s virtual function table.

My slider vtbl type info

first name My slider::get value() "My _slider"

family name bases — type info
offset \——r "Ival slider"

vtbl — typeinfo

H offset allows to find the beginning of the full object, having only a
pointer to a polymorphic sub-object.

Operator dynamic _cast

H The target type of dynamic cast need not be polymorphic. This
allows us to wrap a concrete type in a polymorphic type, say for

transmission through an object I/O system, and then "unwrap" the
concrete type later.

class Io obj{ // base class for object I/O system
virtual Io_obj* clone() = 0;
}i
class Io_date : public Date, public Io _obj{ };
void f(Io_obj* pio)
{
Date* pd = dynamic_cast<Date*>(pio)
/...
}

H A dynamic cast to void * can be used to determine the address of
the beginning of an object of polymorphic type.

void g(Ival box* pb,Date* pd)

{

void* pdl = dynamic_cast<void*>(pb) ; // ok

void* pd2 =dynamic_cast<void*>(pd) ; // error: Date not polymorphic

}

dynamic_cast of References

B To get polymorphic behavior, an object must be manipulated through a pointer or a reference.

When a dynamic cast is used for a pointer type, a 0 indicates failure. That is neither feasible nor
desirable for references.

If the operand of a dynamic cast to a reference isn’t of the expected type, a bad cast exception is
thrown.

void f(Ival box* p, Ival boxé& r)

if (Ival slider* is = dynamic cast<Ival slider*>(p)) {
- o ~// does p point to an Ival slider?
// use ‘is’ -
} else {
// *p not a slider
}

Ival slider& is = dynamic cast<Ival _slideré&>(r) ;

// r references an Ival slider!
// use ‘is’

}

‘ If a user wants to protect against bad casts to references, a suitable handler must be provided.

void g()
{

try {
f(new BB _ival slider,*new BB ival slider) ;

// arguments passed as Ival boxs
f (new BBdial,*new BBdial) ; // arguments passed as Ival boxs

}
catch (bad cast) {
} // ...

}

Navigating Class Hierarchies

® When only single inheritance 1s used, a class and
its base classes constitute a tree rooted 1n a single
base class.

B When multiple inheritance 1s used, there 1s no
single root.

B If a class appears more than once 1n a hierarchy,
we must be a bit careful when we refer to the
object or objects that represent that class.

10

Navigating Class Hierarchies

H Consider the following lattice of classes:

class Component : public wvirtual Storable
75 oo W) g

class Receiver : public Component

{/* ... */ };

class Transmitter : public Component

{/* ... */ };

class Radio : public Receiver, public
Transmitter{ /* ... */ };

Storable
Component Component
Recelver Transmitter

Radio

H A Radio object has two subobjects of class Component.
Consequently, a dynamic_cast from Storable to Component within
a Radio will be ambiguous and return a 0 . There 1s simply no way
of knowing which Component the programmer wanted:

void hl (Radioé& r)

{
Storable* ps= &r;

/...

}

Component* pc = dynamic cast<Component*>(ps) ; // pc = 0

11

Navigating Class Hierarchies

H This ambiguity 1s not in general detectable at compile time:

void h2 (Storable* ps) // ps might or might not
// point to a Component
{

/...
}

Component* pc = dynamic cast<Component*>(ps) ;

Storable

PN

Component Component

1

Recelver Transmitter

~N ./

Radio

H This kind of runtime ambiguity detection is needed only for
virtual bases. For ordinary bases, there 1s always a unique
subobject of a given cast (or none) when downcasting (that 1s,

towards a derived class).

H The equivalent ambiguity occurs when upcasting (that is, towards
a base) and such ambiguities are caught at compile time.

12

Static and Dynamic Casts

H A dynamic cast can cast from a polymorphic virtual base class to
a derived class or a sibling class. A static_cast does not examine
the object it casts from, so i1t cannot:

Storable

PN

Component Component

1 I

Recelver Transmitter

~N

Radio

void g(Radioé& r)

Receiver* prec= &r; // Receiver is ordinary base of Radio
Radio* pr = static_cast<Radio*>(prec) ; // ok, unchecked
pr = dynamic_cast<Radio*>(prec) ; // ok, runtime checked
Storable* ps= &r; // Storable is virtual base of Radio

pr = static_cast<Radio*>(ps) ;
// error: cannot cast from virtual base
pr = dynamic_cast<Radio*>(ps) ; // ok, runtime checked

H The dynamic cast requires a polymorphic operand.

H There is a small runtime cost associated with the use of a
dynamic cast. If the programs provides other means to ensure,
that the casting is correct, a static cast can be used.

13

Static and Dynamic Casts

I The compiler cannot assume anything about the memory pointed to by a void
*. For that, a static cast 1s needed.

Radio* f (void* p)

{
Storable* ps = static cast<Storable*>(p) ; // trust the programmer
return dynamic_cast<Radio*>(ps) ;

}

Both dynamic cast and static cast respect const and access control:

class Users : private set<Person> { /* ... */ };
void f (Users* pu, const Receiver* pcr)

{

static_cast<set<Person>*>(pu) ; // error: access violation
dynamic_cast<set<Person>*>(pu) ; // error: access violation
static_cast<Receiver*>(pcr) ; // error: can’t cast away const
dynamic cast<Receiver*>(pcr) ; // error: can’t cast away const
Receiver* pr = const cast<Receiver*>(pcr) ; // ok

//

}

I It is not possible to cast to a private base class, and "casting away const "
requires a const cast. Even then, using the result is safe only provided the
object wasn’t originally declared const.

Cast Operators Summary

| static cast
H unchecked casting between related types

B dynamic cast
H checked casting between related types

| const cast
H removal of const attribute from the object

| reinterpret cast
H casting between unrelated types (e.g. inf and pointer)
B C-style casting (7)e

H any conversion, that can be expressed as a combination of
operators static cast, reinterpret cast and const cast

15

Class Object Construction and Destruction

B A class object is built from "raw memory" by its
constructors and it reverts to "raw memory" as its
destructors are executed.

Construction 1s bottom up, destruction 1s top down, and a
class object 1s an object to the extent that 1t has been
constructed or destroyed.

H If the constructor for Component calls a virtual function,
it will invoke a version defined for Storable or
Component, but not one from Receiver, Transmitter or
Radio. At that point of construction, the object 1sn’t yet a
Radio; 1t 1s merely a partially constructed object.

H It is best to avoid calling virtual functions during
construction and destruction.

16

Operator typeid

H The typeid operator yields an object representing the type of its
operand.

H 1ypeid behaves like a function with the following declaration:

class type_ info;
const type info& typeid(type name) throw(bad typeid) ;// pseudo declaration
const type info& typeid(expression) ; // pseudo declaration

H fype_info 1s defined in the standard library, in a header file
<typeinfo>

H Most frequently fypeid() 1s used to find a type of an object referred
to by a pointer or a reference:

void f (Shape& r, Shape* p)
{
typeid(r) ; // type of object referred to by r
typeid(*p) ; // type of object pointed to by p
typeid(p) ; // type of pointer, that is, Shape*
// (uncommon, except as a mistake)

}

If the value of a pointer is 0, typeid() throws a bad typeid
exception.

17

Operator typeid

B The implementation-independent part of #ype info looks like this:

class type info {
public:
virtual ~type info() ; // is polymorphic
bool operator==(const type info&) const; // can be compared
bool operator!=(const type info&) const;
bool before(const type info&) const; // ordering
const char* name() const; // name of type
private:
type info(const type info&) ; // prevent copying
type info& operator=(const type info&) ; // prevent copying
// ...
}i

B The before() function allows type infos to be sorted. There is no relation
between the relationships defined by before and inheritance relationships.

B It is not guaranteed that there is only one type info object for each type in the
system.

B we should use == on fype_info objects to test equality, rather than == on pointers to
such objects.

18

Operator typeid

B We sometimes want to know the exact type of an object so as to perform some
standard service on the whole object (and not just on some base of the object).

B Ideally, such services are presented as virtual functions so that the exact type
needn’t be known.

H In some cases, no common interface can be assumed for every object
manipulated, so the detour through the exact type becomes necessary.

B Another, much simpler, use has been to obtain the name of a class for
diagnostic output:

#include<typeinfo>
void g (Component* p)

{
cout << typeid(*p) .name() ;

}
B The character representation of a class’ name is implementation-defined.

B This C-style string resides in memory owned by the system, so the programmer
should not attempt to delete /] it.

19

Uses and Misuses of RTTI

B RTTI = Run Time Type Information
B One should use explicit runtime type information only when necessary

H Static (compile-time) checking is safer, implies less overhead, and — where
applicable — leads to better-structured programs.

B For example, RTTI can be used to write thinly disguised switch-statements:

// misuse of runtime type information:
void rotate (const Shapeé& r)
{
if (typeid(r) == typeid(Circle)) {
// do nothing
}
else if (typeid(r) == typeid(Triangle)) {
// rotate triangle
}
else if (typeid(r) == typeid(Square)) {
// rotate square
}
// ...
}

B Using dynamic_cast rather than #ypeid would improve this code only
marginally.

B Virtual functions are the best solution here.
20

Pointers to Members

B Pointers to members are useful, when a class has many member function with
the same arguments.

class X {
double g(double a) { return a*a + 5.0; }
double h(double a) { return a - 13; }
public:
void test (X*, X);
};
typedef double (X::*pf) (double);// pointer to member
void X::test(X* p, X q) {
pf ml = &X::g;
pf m2 = &X::h;
double g6 = (p->*ml) (6.0); // call through pointer to member
double h6 = (p->*m2) (6.0); // call through pointer to member
double gl2 = (gq.*ml) (12); // call through pointer to member
double hl2 = (g.*m2) (12); // call through pointer to member
}
int main () {
X i;
i.test(&i, 1i);
}

B >* and *. are the special operators to deal with pointers to members
B A pointer to a static member is a normal pointer

21

Pointers to Members

Bl The virtual functions work as usual

class X typedef void (X::*pf) (double);
protected: void
int val; test (X * p, X * q)
public: {
X(int v) : val(v) {}; pf m = &X::£;
virtual void f (double a) (p->*m) (6.0) ;
{ (gq->*m) (7.0) ;
cout << a + val <<endl; }
}
virtual ~X(){}; int
}; main ()
{
X i(3);
class Y: public X Y j(4);
{ test (&i, &3j);
public: }
Y(int v) : X(v) {};
void £ (double a)
{
cout << 2 * a + val <<endl;
}
};

A pointer to a virtual member 1sn’t a pointer to a piece of memory the way a

pointer to a variable or a pointer to a function is. It is more like an index into an
array (virtual function table).

B A pointer to a virtual member can therefore safely be passed between different
address spaces as long as the same object layout is used in both.

Pointers to Members and Inheritance

B A derived class has at least the members that i1t inherits
from 1ts base classes. Often 1t has more.

B This implies that we can safely assign a pointer to a
member of a base class to a pointer to a member of a
derived class, but not the other way around.

class X {
public:
virtual void start() ;
virtual ~X() {}
};
class Y : public X {
public:
void start() ;
virtual void print() ;
};
void (X::* pmi) () = &Y::print; // error
void (Y::*pmt) () = &X::start; // ok

23

Operators new and delete

B The operators dealing with the free store (new, delete, new [] and delete/[]) are
implemented using functions:

void* operator new(size t) ; // space for individual object
void operator delete (void*) ;

void* operator new[] (size t) ; // space for array

void operator delete[] (void¥*) ;

B When operator new needs to allocate space for an object, it calls operator new() to
allocate a suitable number of bytes. Similarly, when operator new needs to allocate
space for an array, it calls operator new []().

B When new can find no store to allocate, the allocator throws a bad alloc exception.
B We can specify what new should do upon memory exhaustion. When new fails, it first

calls a function specified by a call to set new handler() declared in <new>, if any.

void out of store() {
cerr << "operator new failed: out of store\n";
throw bad alloc() ;
}
int main() {
set new_handler (out of store) ; // make out of store the new_handler
for (;;) new char[10000] ;
cout << "done\n";

24

Operators new and delete

B A new handler might do something more clever than simply terminating the
program.

B If a programmer knows how new and delete work — for example, because he
provided his own operator new() and operator delete() — the handler might
attempt to find some memory for new to return.

B Operator new() implemented using malloc can look like follows:

void* operator new(size t size)

{

for (;;) {
if (void* p =malloc(size)) return p; // try to find memory
if (_new_handler == 0) throw bad alloc() ; // no handler: give up
_new _handler() ; // ask for help

}
}

B The new handler can do one of the following things:
® find more memory and return

® throw bad_alloc

25

Placement new

B We can place an object at any address, using the placement
new operator

void* operator new(size t, void* p) { return p; }
// explicit placement operator

int main()
{
char buf[sizeof (string)];
string* s = new(buf) string; // construct an string at ‘buf;’ invokes:
// operator new(sizeof (string) ,buf);
*s="hello";
cout << *s<<endl;
s->~string() ;
};

B It is one of the rare cases, when explicit call of a destructor 1s
used

B This code still has alignment problems with character buffer.
Should use std::aligned storage t.

B This 1s the simplest version of placement new operator. It 1s

defined in a header file <new>
26

Placement new

B The placement new construct can also be used to allocate memory from a
specific arena:

class Arena {

public:
virtual void* alloc(size t) =0;
virtual void free (void*) =0;

//
&

void* operator new(size t sz ,Arena* a) {

return a->alloc(sz) ;

}

B Now objects of arbitrary types can be allocated from different Arenas as
needed.

extern Arena*Persistent;
extern Arena* Shared;
void g(int i) {

X* p = new(Persistent)X(i) ; // X in persistent storage
X* q = new(Shared) X(i) ; // X in shared memory
/] ...

}

B The destructor has to be called explicitly

void destroy (X* p,Arena* a) {
p->~X() ; // call destructor
a->free(p) ; // free memory

}

27

Placement delete

B’ The placement delete operator 1s invoked, 1f an
exception 1s thrown 1n the object constructor.

void operator delete (void *s, Arena * a)

{
a->free (s);
};
B Apart from scalar placement new and delete
operators we can define similar operators for

arrays.

28

Memory Management for Classes

H It 1s possible to take over memory management for a class by
defining operator new() and operator delete() as class members.

class Employee {

// ...
public:
// ...
void* operator new(size_ t)
void operator delete(void*, size t)

.
4

i

H Member operator new()s and operator delete()s are implicitly
static members.

void* Employee: :operator new(size_ t s)
{

// allocate ‘s’
}

void Employee: :operator delete(void* p, size t s)

{

bytes of memory and return a pointer to it

// assume ‘p’ points to ‘s’ bytes of memory
// allocated by Employee: :operator new()
// and free that memory for reuse

}

29

Memory Management for Classes

B Using size t argument in a delete operator, the memory allocation function can avoid
storing the information about the size of allocated block at every allocation.

B When the object is freed via the pointer to its base class, we need to pass the right size to

operator delete:

class Manager : public Employee {
int level;

// ...
i
void £()
{

Employee* p = new Manager; // trouble (the exact type is lost)
delete p;

}

B To avoid the problem, the base class needs a virtual destructor. Even the empty
destructor will do.

class Employee {

public:
void* operator new(size t) ;
void operator delete(void*, size t)
virtual ~Employee ()
// ...

i
Employee: :~Employee() { }

30

Memory Allocation for an Array of Objects

The class can also define array allocators and

deallocators, used when dealing with arrays of objects:

class Employee {
public:
void* operator newl[] (size t) ;
void operator delete[] (void*, size t) ;
// ...
};
void f(int s)
{
Employee* p = new Employee[s] ;
// ...
delete[] p-

}
B The memory needed will be obtained by a call,

Employee: : operator new [] (sizeof (Employee) *s+delta)
where delta 1s some minimal implementation-defined

overhead, and released by a call:

Employee: : operator delete [] (p, s*sizeof (Employee) +delta)

31

Temporary Objects

B Temporary objects most often are the result of arithmetic expressions. For
example, at some point in the evaluation of x*y+z the partial result x *y must
exist somewhere.

B Unless bound to a reference or used to initialize a named object, a temporary
object 1s destroyed at the end of the full expression in which it was created. A
full expression is an expression that is not a subexpression of some other
expression.

void f(string& sl, string& s2, stringé& s3)
{

const char* cs= (sl+s2).c_str() ;

cout << cs;
if (strlen(cs=(s 3).c_str())<8 && cs[0]=="a") {
// cs used here

} Pointer to freed memory

}

B A temporary object of class string is created to hold s/+s2. Next, a pointer to a
C-style string 1s extracted from that object. Then — at the end of the expression
— the temporary object 1s deleted.

B The condition will work as expected because the full expression in which the
temporary holding s2+s3 is created is the condition itself. However, that
temporary is destroyed before the controlled statement is entered, so any use of
cs there is not guaranteed to work.

32

Temporary Objects

B A temporary can be used as an initializer for a const
reference or a named object.

void g(const string&, const stringé&) ;
void h(string& sl, stringé& s2)

{

const string& s = sl+s2;

string ss = sl+s2;

g(s,ss) ; // we can use s and ss here

}

B A temporary object can also be created by explicitly
invoking a constructor. Such temporaries are destroyed

in exactly the same way as the implicitly generated
temporaries.

void f (Shape& s, int x, int y)
{
s.move (Point (x,y))
// ...
}

; // construct Point to pass to Shape: :move ()

33

