
1

Lecture Material

Class hierarchies and casting

Run Time Type Information (RTTI)

Member pointers

Operators new and delete

Temporary objects



2

Casting

A plausible use of the Ival_boxes would be to hand them 
to a system that controlled a screen and have that system 
hand objects back to the application program whenever 
some activity had occurred.
User interface system will not know about our 
Ival_boxes. The system’s interfaces will be specified in 
terms of the system’s own classes and objects rather than 
our application’s classes.
We lose information about the type of objects passed to 
the system and later returned to us.
We need the operation allowing to recreate lost 
information about the type of an object.



3

Operator dynamic_cast
Operator dynamic_cast returns a valid pointer if the object is of the expected 
type and a null pointer if it isn’t.

Casting from a base class to a derived class is often called a downcast because 
of the convention of drawing inheritance trees growing from the root down. 
Similarly, a cast from a derived class to a base is called an upcast. A cast that 
goes from a base to a sibling class, like the cast from BBwindow to Ival_box, is 
called a crosscast.

void my_event_handler(BBwindow* pw)
{
if (Ival_box* pb = dynamic_cast<Ival_box*>(pw)) 

                                      // does pw point to an Ival_box?
pb->do_something() ;

else {
// Oops! unexpected event
}

}

BBslider

BB_ival_slider

Ival_slider

BBwindowIval_boxpb pw



4

Operator dynamic_cast

The dynamic_cast operator takes two operands, a type bracketed 
by < and >, and a pointer or reference bracketed by ( and ).

When using the conversion

if p is a pointer to T or an accessible base class of T , the result is 
exactly as if we had simply assigned p to a T *, e.g.:

dynamic_cast<T*>(p)

class BB_ival_slider : public Ival_slider, protected BBslider {
// ...

};
void f(BB_ival_slider* p)
{
Ival_slider* pi1 = p; // ok
Ival_slider* pi2 =dynamic_cast<Ival_slider*>(p) ; // ok
BBslider* pbb1 =p; // error: BBslider is a protected base
BBslider* pbb2 = dynamic_cast<BBslider*>(p) ; // ok: pbb2 becomes 0

}



5

Operator dynamic_cast

The previous example is the uninteresting case. However, it is 
reassuring to know that dynamic_cast doesn’t allow accidental 
violation of the protection of private and protected base classes.

The purpose of dynamic_cast is to deal with the case in which the 
correctness of the conversion cannot be determined by the 
compiler. In that case,

looks at the object pointed to by p (if any). If that object is of class 
T or has a unique base class of type T , then dynamic_cast returns 
a pointer of type T * to that object; otherwise, 0 is returned.

If the value of p is 0 , dynamic_cast <T *>(p) returns 0.

Note the requirement that the conversion must be to a uniquely 
identified object. It is possible to construct examples where the 
conversion fails and 0 is returned because the object pointed to by 
p has more than one subobject representing bases of type T.

dynamic_cast<T*>(p)



6

Operator dynamic_cast

A dynamic_cast requires a pointer or a reference 
to a polymorphic type to do a downcast or a 
crosscast.

class My_slider: public Ival_slider { // polymorphic base 
                                   //(Ival_slider has virtual functions)
// ...

};
class My_date : public Date { // base not polymorphic 
                              // (Date has no virtual functions)
// ...

};
void g(Ival_box* pb, Date* pd)
{
  My_slider* pd1 = dynamic_cast<My_slider*>(pb) ; // ok
  My_date*pd2 =dynamic_cast<My_date*>(pd) ; // error: Date not polymorphic
}



7

Operator dynamic_cast

Requiring the pointer’s type to be polymorphic simplifies the 
implementation of dynamic_cast because it makes it easy to find a 
place to hold the necessary information about the object’s type.

A typical implementation will attach a "type information object" 
to an object by placing a pointer to the type information in the 
object’s virtual function table.

offset allows to find the beginning of the full object, having only a 
pointer to a polymorphic sub-object.

vtbl

...

family_name

first_name

typeinfo

offset

...

My_slider::get_value()

My_slider vtbl

bases

"My_slider"

type_info

"Ival_slider"

type_info



8

Operator dynamic_cast

The target type of dynamic_cast need not be polymorphic. This 
allows us to wrap a concrete type in a polymorphic type, say for 
transmission through an object I/O system, and then "unwrap" the 
concrete type later.

A dynamic_cast to void * can be used to determine the address of 
the beginning of an object of polymorphic type.

class Io_obj{ // base class for object I/O system
virtual Io_obj* clone() = 0;

};
class Io_date : public Date, public Io_obj{ };
void f(Io_obj* pio)
{
Date* pd = dynamic_cast<Date*>(pio) ;
// ...

}

void g(Ival_box* pb,Date* pd)
{
void* pd1 = dynamic_cast<void*>(pb) ; // ok
void* pd2 =dynamic_cast<void*>(pd) ; // error: Date not polymorphic

}



9

dynamic_cast of References
To get polymorphic behavior, an object must be manipulated through a pointer or a reference.

When a dynamic_cast is used for a pointer type, a 0 indicates failure. That is neither feasible nor 
desirable for references.

If the operand of a dynamic_cast to a reference isn’t of the expected type, a bad_cast exception is 
thrown.

If a user wants to protect against bad casts to references, a suitable handler must be provided.

void f(Ival_box* p, Ival_box& r)
{
if (Ival_slider* is = dynamic_cast<Ival_slider*>(p)) { 

                                         // does p point to an Ival_slider?
// use ‘is’

 } else {
// *p not a slider

}
Ival_slider& is = dynamic_cast<Ival_slider&>(r) ; 

                                         // r references an Ival_slider!
// use ‘is’

}

void g()
{
try {

f(new BB_ival_slider,*new BB_ival_slider) ; 
                                           // arguments passed as Ival_boxs

f(new BBdial,*new BBdial) ; // arguments passed as Ival_boxs
}
catch (bad_cast) {

// ...
}

}



10

Navigating Class Hierarchies

When only single inheritance is used, a class and 
its base classes constitute a tree rooted in a single 
base class.

When multiple inheritance is used, there is no 
single root.

If a class appears more than once in a hierarchy, 
we must be a bit careful when we refer to the 
object or objects that represent that class.



11

Navigating Class Hierarchies

Consider the following lattice of classes:

A Radio object has two subobjects of class Component. 
Consequently, a dynamic_cast from Storable to Component within 
a Radio will be ambiguous and return a 0 . There is simply no way 
of knowing which Component the programmer wanted:

class Component : public virtual Storable
{ /* ... */ };
class Receiver : public Component
{ /* ... */ };
class Transmitter : public Component
{ /* ... */ };
class Radio : public Receiver, public 
Transmitter{ /* ... */ };

Component

Receiver

Component

Transmitter

Storable

Radio

void h1(Radio& r)
{
Storable* ps= &r;
// ...
Component* pc = dynamic_cast<Component*>(ps) ; // pc = 0

}



12

Navigating Class Hierarchies
This ambiguity is not in general detectable at compile time:

This kind of runtime ambiguity detection is needed only for 
virtual bases. For ordinary bases, there is always a unique 
subobject of a given cast (or none) when downcasting (that is, 
towards a derived class).
The equivalent ambiguity occurs when upcasting (that is, towards 
a base) and such ambiguities are caught at compile time.

void h2(Storable* ps) // ps might or might not
                      // point to a Component
{
Component* pc = dynamic_cast<Component*>(ps) ;
// ...

}

Component

Receiver

Component

Transmitter

Storable

Radio



13

Static and Dynamic Casts
A dynamic_cast can cast from a polymorphic virtual base class to 
a derived class or a sibling class. A static_cast does not examine 
the object it casts from, so it cannot:

The dynamic_cast requires a polymorphic operand.
There is a small runtime cost associated with the use of a 
dynamic_cast. If the programs provides other means to ensure, 
that the casting is correct, a  static_cast can be used.

void g(Radio& r)
{
Receiver* prec= &r; // Receiver is ordinary base of Radio
Radio* pr = static_cast<Radio*>(prec) ; // ok, unchecked
pr = dynamic_cast<Radio*>(prec) ; // ok, runtime checked
Storable* ps= &r; // Storable is virtual base of Radio
pr = static_cast<Radio*>(ps) ; 

        // error: cannot cast from virtual base
pr = dynamic_cast<Radio*>(ps) ; // ok, runtime checked

}

Component

Receiver

Component

Transmitter

Storable

Radio



14

Static and Dynamic Casts
The compiler cannot assume anything about the memory pointed to by a void 
*. For that, a static_cast is needed.

Both dynamic_cast and static_cast respect const and access control:

It is not possible to cast to a private base class, and "casting away const " 
requires a const_cast. Even then, using the result is safe only provided the 
object wasn’t originally declared const.

Radio* f(void* p)
{
Storable* ps = static_cast<Storable*>(p) ; // trust the programmer
return dynamic_cast<Radio*>(ps) ;

}

class Users : private set<Person> { /* ... */ };
void f(Users* pu, const Receiver* pcr)
{
static_cast<set<Person>*>(pu) ; // error: access violation
dynamic_cast<set<Person>*>(pu) ; // error: access violation
static_cast<Receiver*>(pcr) ; // error: can’t cast away const
dynamic_cast<Receiver*>(pcr) ; // error: can’t cast away const
Receiver* pr = const_cast<Receiver*>(pcr) ; // ok
// ...

}



15

Cast Operators Summary

static_cast
unchecked casting between related types

dynamic_cast
checked casting between related types

const_cast
removal of const attribute from the object

reinterpret_cast
casting between unrelated types (e.g. int and pointer)

C-style casting (T)e
any conversion, that can be expressed as a combination of 
operators static_cast, reinterpret_cast and const_cast



16

Class Object Construction and Destruction

A class object is built from "raw memory" by its 
constructors and it reverts to "raw memory" as its 
destructors are executed.
Construction is bottom up, destruction is top down, and a 
class object is an object to the extent that it has been 
constructed or destroyed.
If the constructor for Component calls a virtual function, 
it will invoke a version defined for Storable or 
Component, but not one from Receiver, Transmitter or 
Radio. At that point of construction, the object isn’t yet a 
Radio; it is merely a partially constructed object.
It is best to avoid calling virtual functions during 
construction and destruction.



17

Operator typeid
The typeid operator yields an object representing the type of its 
operand.
typeid behaves like a function with the following declaration:

type_info is defined in the standard library, in a header file 
<typeinfo>
Most frequently typeid() is used to find a type of an object referred 
to by a pointer or a reference:

If the value of a pointer is 0, typeid() throws a bad_typeid 
exception.

class type_info;
const type_info& typeid(type_name) throw(bad_typeid) ;// pseudo declaration
const type_info& typeid(expression) ; // pseudo declaration

void f(Shape& r, Shape* p)
{
typeid(r) ; // type of object referred to by r
typeid(*p) ; // type of object pointed to by p
typeid(p) ; // type of pointer, that is, Shape* 

             // (uncommon, except as a mistake)
}



18

Operator typeid
The implementation-independent part of type_info looks like this:

The before() function allows type_infos to be sorted. There is no relation 
between the relationships defined by before and inheritance relationships.

It is not guaranteed that there is only one type_info object for each type in the 
system.

we should use == on type_info objects to test equality, rather than == on pointers to 
such objects.

class type_info {
public:

virtual ~type_info() ; // is polymorphic
bool operator==(const type_info&) const; // can be compared
bool operator!=(const type_info&) const;
bool before(const type_info&) const; // ordering
const char* name() const; // name of type

private:
type_info(const type_info&) ; // prevent copying
type_info& operator=(const type_info&) ; // prevent copying
// ...

};



19

Operator typeid
We sometimes want to know the exact type of an object so as to perform some 
standard service on the whole object (and not just on some base of the object).

Ideally, such services are presented as virtual functions so that the exact type 
needn’t be known.

In some cases, no common interface can be assumed for every object 
manipulated, so the detour through the exact type becomes necessary.

Another, much simpler, use has been to obtain the name of a class for 
diagnostic output:

The character representation of a class’ name is implementation-defined.

This C-style string resides in memory owned by the system, so the programmer 
should not attempt to delete [] it.

#include<typeinfo>
void g(Component* p)
{
cout << typeid(*p).name() ;

}



20

Uses and Misuses of RTTI
RTTI = Run Time Type Information

One should use explicit runtime type information only when necessary

Static (compile-time) checking is safer, implies less overhead, and – where 
applicable – leads to better-structured programs.

For example, RTTI can be used to write thinly disguised switch-statements:

Using dynamic_cast rather than typeid would improve this code only 
marginally. 

Virtual functions are the best solution here.

// misuse of runtime type information:
void rotate(const Shape& r)
{
if (typeid(r) == typeid(Circle)) {

// do nothing
}
else if (typeid(r) == typeid(Triangle)) {

// rotate triangle
}
else if (typeid(r) == typeid(Square)) {

// rotate square
}

// ...
}



21

Pointers to Members
Pointers to members are useful, when a class has many member function with 
the same arguments.

->* and *. are the special operators to deal with pointers to members

A pointer to a static member is a normal pointer

class X {   
double g(double a) { return a*a + 5.0; }
double h(double a) { return a - 13; }

public:            
void test(X*, X);

};
typedef double (X::*pf)(double);// pointer to member
void X::test(X* p, X q) {
pf m1 = &X::g;
pf m2 = &X::h;
double g6 = (p->*m1)(6.0); // call through pointer to member
double h6 = (p->*m2)(6.0); // call through pointer to member
double g12 = (q.*m1)(12); // call through pointer to member
double h12 = (q.*m2)(12); // call through pointer to member

}
int main(){
X i;
i.test(&i, i);

}



22

Pointers to Members
The virtual functions work as usual

A pointer to a virtual member isn’t a pointer to a piece of memory the way a 
pointer to a variable or a pointer to a function is. It is more like an index into an 
array (virtual function table).
A pointer to a virtual member can therefore safely be passed between different 
address spaces as long as the same object layout is used in both.

class X
{
protected:
  int val;
public:
  X(int v) : val(v) {};
  virtual void f (double a)
  {
    cout << a + val <<endl;
  }
  virtual ~X(){};
};

class Y: public X
{
public:
  Y(int v) : X(v) {};
  void f (double a)
  {
    cout << 2 * a + val <<endl;
  }
};

typedef void (X::*pf) (double);

void
test (X * p, X * q)
{
  pf m = &X::f;
  (p->*m)(6.0);
  (q->*m)(7.0);
}

int
main ()
{
  X i(3);
  Y j(4);
  test (&i, &j);
}



23

Pointers to Members and Inheritance

A derived class has at least the members that it inherits 
from its base classes. Often it has more.

This implies that we can safely assign a pointer to a 
member of a base class to a pointer to a member of a 
derived class, but not the other way around.

class X {
public:

virtual void start() ;
virtual ~X() {}

};
class Y : public X {
public:

void start() ;
virtual void print() ;

};
void (X::* pmi)() = &Y::print; // error
void (Y::*pmt)() = &X::start; // ok



24

Operators new and delete
The operators dealing with the free store (new, delete, new [] and delete[]) are 
implemented using functions:

When operator new needs to allocate space for an object, it calls operator new() to 
allocate a suitable number of bytes. Similarly, when operator new needs to allocate 
space for an array, it calls operator new []().

When new can find no store to allocate, the allocator throws a bad_alloc exception.

We can specify what new should do upon memory exhaustion. When new fails, it first 
calls a function specified by a call to set_new_handler() declared in <new>, if any.

void* operator new(size_t) ; // space for individual object
void operator delete(void*) ;
void* operator new[](size_t) ; // space for array
void operator delete[](void*) ;

void out_of_store() {
  cerr << "operator new failed: out of store\n";
  throw bad_alloc() ;
}
int main() {
  set_new_handler(out_of_store) ; // make out_of_store the new_handler
  for (;;) new char[10000] ;
    cout << "done\n";
}



25

Operators new and delete
A new_handler might do something more clever than simply terminating the 
program.

If a programmer knows how new and delete work – for example, because he 
provided his own operator new() and operator delete() – the handler might 
attempt to find some memory for new to return.

Operator new() implemented using malloc can look like follows:

The new_handler can do one of the following things:
 find more memory and return
 throw bad_alloc

void* operator new(size_t size)
{
for (;;) {

if (void* p =malloc(size)) return p; // try to find memory
if (_new_handler == 0) throw bad_alloc() ; // no handler: give up
_new_handler() ; // ask for help

}
}



26

Placement new

We can place an object at any address, using the placement 
new operator

It is one of the rare cases, when explicit call of a destructor is 
used

This code still has alignment problems with character buffer. 
Should use std::aligned_storage_t.

This is the simplest version of placement new operator. It is 
defined in a header file <new>

void* operator new(size_t, void* p) { return p; } 
                                             // explicit placement operator

int main()
{
char buf[sizeof(string)];
string* s = new(buf) string; // construct an string at ‘buf;’ invokes:

                              // operator new(sizeof(string),buf);
*s="hello";
cout << *s<<endl;
s->~string();

};



27

Placement new
The placement new construct can also be used to allocate memory from a 
specific arena:

Now objects of arbitrary types can be allocated from different Arenas as 
needed.

The destructor has to be called explicitly

class Arena {
public:

virtual void* alloc(size_t) =0;
virtual void free(void*) =0;
// ...

};
void* operator new(size_t sz,Arena* a) {
return a->alloc(sz) ;

}

extern Arena*Persistent;
extern Arena* Shared;
void g(int i) {
X* p = new(Persistent)X(i) ; // X in persistent storage
X* q = new(Shared) X(i) ; // X in shared memory
// ...

}

void destroy(X* p,Arena* a) {
p->~X() ; // call destructor
a->free(p) ; // free memory

}



28

Placement delete

The placement delete operator is invoked, if an 
exception is thrown in the object constructor.

Apart from scalar placement new and delete 
operators we can define similar operators for 
arrays.

void operator delete (void *s, Arena * a)
{
  a->free (s);
};



29

Memory Management for Classes

It is possible to take over memory management for a class by 
defining operator new() and operator delete() as class members.

Member operator new()s and operator delete()s are implicitly 
static members.

class Employee {
// ...
public:
// ...

void* operator new(size_t) ;
void operator delete(void*, size_t) ;

};

void* Employee::operator new(size_t s)
{
// allocate ‘s’ bytes of memory and return a pointer to it

}
void Employee::operator delete(void* p, size_t s)
{
// assume ‘p’ points to ‘s’ bytes of memory 

 // allocated by Employee::operator new()
// and free that memory for reuse

}



30

Memory Management for Classes
Using size_t argument in a delete operator, the memory allocation function can avoid 
storing the information about the size of allocated block at every allocation.

When the object is freed via the pointer to its base class, we need to pass the right size to 
operator delete:

To avoid the problem, the base class needs a virtual destructor. Even the empty 
destructor will do.

class Manager : public Employee {
int level;
// ...

};
void f()
{
Employee* p = new Manager; // trouble (the exact type is lost)
delete p;

}

class Employee {
public:

void* operator new(size_t) ;
void operator delete(void*, size_t) ;
virtual ~Employee() ;
// ...

};
Employee: :~Employee() { }



31

Memory Allocation for an Array of Objects

The class can also define array allocators and 
deallocators, used when dealing with arrays of objects:

The memory needed will be obtained by a call,

where delta is some minimal implementation-defined 
overhead, and released by a call:

class Employee {
public:

void* operator new[](size_t) ;
void operator delete[](void*, size_t) ;
// ...

};
void f(int s)
{
Employee* p = new Employee[s] ;
// ...
delete[] p;

}

Employee::operator new[](sizeof(Employee)*s+delta)

Employee::operator delete[](p,s*sizeof(Employee)+delta)



32

Temporary Objects
Temporary objects most often are the result of arithmetic expressions. For 
example, at some point in the evaluation of x*y+z the partial result x*y must 
exist somewhere.
Unless bound to a reference or used to initialize a named object, a temporary 
object is destroyed at the end of the full expression in which it was created. A 
full expression is an expression that is not a subexpression of some other 
expression.

A temporary object of class string is created to hold s1+s2. Next, a pointer to a 
C-style string is extracted from that object. Then – at the end of the expression 
– the temporary object is deleted.
The condition will work as expected because the full expression in which the 
temporary holding s2+s3 is created is the condition itself. However, that 
temporary is destroyed before the controlled statement is entered, so any use of 
cs there is not guaranteed to work.

void f(string& s1, string& s2, string& s3)
{
const char* cs= (s1+s2).c_str() ;
cout << cs;
if (strlen(cs=(s2+s3).c_str())<8 && cs[0]==´a´) {

// cs used here
}

}
Pointer to freed memory



33

Temporary Objects

A temporary can be used as an initializer for a const 
reference or a named object.

A temporary object can also be created by explicitly 
invoking a constructor. Such temporaries are destroyed 
in exactly the same way as the implicitly generated 
temporaries.

void g(const string&, const string&) ;
void h(string& s1, string& s2)
{
const string& s = s1+s2;
string ss = s1+s2;
g(s,ss) ; // we can use s and ss here

}

void f(Shape& s, int x, int y)
{
s.move(Point(x,y)) ; // construct Point to pass to Shape::move()
// ...

}


