
Effective Java

Programming

algorithms

Structure

• algorithms

o selection of algorithm

o comparison of algorithms

o elegance of solution

o consideration of the problem domain

o more than simple algorithms

Selection of algorithm

• may be the fastest algorithm for one type of

data, and slow for another

• need to consider how the algorithm will be used

• choose the solution that is most likely the best

• complexity of algorithms
o memory complexity - the number and size of the data

structures used in the algorithm

o time complexity - the relationship between the number of

elementary operations performed during the run of the

algorithm, and the size of the input data (given as a function of

the size of the data)

Selection of algorithm

• time complexity

o two algorithms of the same execution time F1(N) and

F2(N) have order of complexity if:

 , where 0 < C < ∞

• If C = 0, algorithm with execution time F1(N) has a

lower complexity order (better complexity)

• If C = ∞, algorithm with execution time F1(N) has

higher complexity order (worse complexity)

Selection of algorithm

• time complexity

• allows comparison of algorithm speed

• shows the trends in execution time with

increasing problem

• complexity algorithm defines the notation O

(Landau)

• O(F(N)) means that the algorithm has

the complexity of the same order as the algorithm

with run-time F(N)

• examples:

O(1), O(log(N)), O(N), O(Nlog(N)), O(N2), O(Nk),

O(2N), O(N!)

Example – sum of integers

• number of calculations depends on amount of numbers

• linear complexity O(N)

class SimpleSum {

 public long sum(int start, int stop) {

 long sum = 0;

 for (int i = start; i <= stop; i++) {

 sum += i;

 }

 return sum;

 }

}

Example – sum of integers Example – sum of integers

• number of calculations is constant,

independent of amount of numbers

• constant complexity O(1)

class SmartSum {

 public long sum(int start, int stop) {

 long big = stop * (stop + 1) / 2;

 start--; // result considers start

 long small = start * (start + 1) / 2;

 return big - small;

 }

}

Comparision of algorithms

• complexity is an estimate

• estimates are not reality, but are good indicators

• we can have algorithms of similar comlexity

• having interesting alternatives you should compare

them

• easiest way – write a benchmark

• best performed on:

 different amount of data

 many times

Comparison – simplified example

SimpleSum sims = new SimpleSum();

long before = System.currentTimeMilis();

for (int i = 0; i < 1000 * 1000; i++)

 sims.sum(10, 10000);

long after = System.currentTimeMilis();

System.out.println(„SimpleSum: ” + (after - before) + „ ms.”);

// about 26000ms

SmartSum sms = new SmartSum();

before = System.currentTimeMilis();

for (int i = 0; i < 1000 * 1000; i++)

 sms.sum(10, 10000);

after = System.currentTimeMilis();

System.out.println(„SmartSum: ” + (after - before) + „ ms.”);

// about 15ms

Comparison – take multiple series

• algorithms may behave differently with small and big

amount of data

• they can be better for smaller data portions

• choice is not obvious

• see diagram

• algorithm X – O(1)

• algorithm Y – O(N)

• algorithm Z – O(N2)

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120

E
x
e
c
u

ti
o

n
 t

im
e

Amount of data

Elegance of the solution

• elegant code is like poetry

• hard to define

• minimally complex

• suited for the problem

• result – almost always fast

• on the contrary – brute force

• one after another (solution with loop)

• works only because hardware is fast

• bottlenecks

 micro-optimizations won’t work

 change the algorithm

Taking the problem domain into

account

• having selected the algorithm it can be accelerated

• include the ​​problem domain

• is the algorithm a solution for it?

• what the algorithm shouldn’t do is equally important

• simplify, so it won’t be bothered by anything but the

problem

• example

• Bresenham’s algorithm vs. point by point (latter 25%

better)

• specific solutions are faster then generic

More than simple algorithms

• algorithms are not only solutions

• are embedded in your code

• can give poor results when interacting with OS

• real life example:

• JComboBox was initially inefficient

• adding new elements had an order O(N2)

• interactions with other classes where to blame

• after identifying the problem, order change to O(N)

Conclusions

• how the comlexity of algorithms is defined?

• what besides complexity is also important?

Effective Java

Programming

data structures (collections

and arrays)

Structure

• data structures (collections and arrays)

o collections API

o sets

o lists

o maps

o arrays

Collections API – basic interfaces

Collections API – basic interfaces

• Iterator<E> - one way iterator

• Iterable<E> - get the iterator

• Collection<E>

• Set<E> - no order, no duplicates

• List<E> - order through indexes, duplicates

• Queue<E> - duplicates, order managed by queue

(FIFO, LIFO, natural, priorities, …)

• Deque<E> - bidirectional

• Map<K, V> - key – value relations

• keys cannot be duplicated

API – important functions

• Iterator<E>

• hasNext() – true if next element exists

• next() – gets next element and moves cursor

• remove() – removes last element

• Iterable<E>

• iterator() – get Iterator<E>

• Collection<E>

• add(E)

• remove(Object)

• contains(Object)

• size() – number of elements

API – important functions

• Set<E>

• only inherited from Collection<E>

• List<E>

• add(E) – adds to the end

• add(int, E) – adds at position, rest mover right

• set(int, E) – set at position

• get(int)

• remove(int)

• indexOf(Object)

• lastIndexOf(Object)

API – important functions

• Queue<E>

add to queue
offer(E)

false if impossible

add(E)

exception if impossible

get and remove from

beginning

poll()

null if empty

remove()

exception if empty

get without removing
peek()

null if empty

element()

exception if empty

API – important functions

• Map<K, V>

• put(K, V) – set value for given key

• get(Object) – get value for key

• remove(Object) – remove value for key

• containsKey(Object)

• containsValue(Object)

• keySet() – set of keys

• values() – collection of values

• entrySet() – set of key-value pairs

Collections API – further interfaces

• ListIterator<E> - bidirectional iterator

• Comparable<T>

• compare this object with another

• used for natural order

• class can only have one natural order

• Comparator<T>

• compare two objects

• need for new comparator instance

• non-natural order

• a class can have many comparators

• SortedSet<E> - set of ordered elements *

• SortedMap<E> - map with ordered keys *

API – important functions

• ListIterator<E>

• hasPrevious(), previous()

• Comparable<T>

• compareTo(T) – compares this with given object

 < 0 – this is smaller, 0 – equal, > 0 – this is bigger

• Comparator<T>

• compare(T, T) – compare two objects

• SortedSet<E>

• first(), last()

• SortedMap<K, V>

• firstKey(), lastKey()

Sets – standard implementations

• HashSet<E>

• based on hashtable

• elements must implement hashCode()

• add(E), remove(Object), contains(Object) – O(1)

• TreeSet<E>

• sorted (implements SortedSet<E>)

• moves through elements in natural order or given by

comparator

 elements must implement Comparable<T> for

natural order

• additional functionality = time overhead

Sets – standard implementations

• LinkedhashSet<E>

• similar to HashSet<E>

• offers viewing in order of adding

• faster browsing thanks to bidirectional list

• add and remove are slower

• search stays equally fast – hashtable

• EnumSet<E>

• set only for one type of enumeration at once

• extremely fast

• based on vector of bits

every enumeration has known number of elements

element in set, bit set to 1, otherwise 0

Hashtable

• linear access to elements is too slow

• hashtable divides elements into sublists

• every sublist is in a seperate cell (bucket)

• element’s position is calculated from hashCode() and

length of table

• for a perfect hashing function O(1)

• every bucket has only one element

• only possible if every possible value is known at

beginning

• therefore the table contains lists

• access time depends on load factor

• ratio of size of table to number of elements

Hashtable - efficiency

• efficency of hashtable depends on

• capacity

• load factor

• hash function used on elements (hashCode)

• Java collections based on hashtables (HashSet,

HashMap)

• can set the initial capacity

• can define maximum load factor

• automatically reorganize when hitting boundary

 allocate hashtable with doubled size

 rehash and reorder elements in table

Hashtable - efficiency

• bigger initial capacity

• greedy memory management

• shorter access time

• rare reorganization – time saving

• longer element review

• smaller initial capacity – the opposite

• smaller load factor

• shorter access time

• often reorganization – time consuming, array gets bigger

• longer element review (array grows)

• bigger load factor – the opposite

• both parameters should be set for expected amount of data

Hashtable - efficiency

• you can override hashCode()

• should always return varied values

• worst case – returns constant

 hashtable becomes a list

 hashCode and array become redundant

• every wrapper class and String have optimized hash functions

• contract with equals() has to be preserved

• ATTENTION

• attributes used to calculate hashCode() cannot change after

adding to structure

• after change hashCode() will return new result and the object will

be lost

Contract between equals() and

hashCode()

• if called more then once on same object has to return same value

• assuming data for equals stays the same

• value can change between application runs

• if two objects are the same for equals, they must have same

hashCode

• does not work other way round!!!

• if hashCode equal, objects are not necessarily equal

• if objects are not equal, hashCode does not have to be different. It

is still better when it does

• CONCLUSION

• when overriding hashCode override equals

• calculate hashCode in a deterministic manner using ONLY data

used in equals

equals contract

• Well written equals method must fulfill:

• x.equals(x) == true

• if x.equals(y) == true then y.equals(x) == true

• if x.equals(y) == true and y.equals(z) == true then

x.equals(z) == true

• x.equals(y) returns the same as long all x and y are

the same

• x.equals(null) == false

Sets – NavigableSet (Java 6)

• extends SortedSet<E>

• allows forward and backward navigation

 descendigSet() returns reverse

 iterating in reverse is slower

• additionally

 return subsets with indication whether top and

bottom border range are included

 nearest to target element

 returning and deleting biggest and smallest

element

• implemented in TreeSet<E>

Sets – efficiency comparison

• adding words from books to sets

source

document

number of

words

number of

different

words

HashSet [s] TreeSet [s]

Alice in

Wonderland
28 195 5 909 5 7

The Count of

Monte Cristo

466 300 37 545 75 98

Taken from „Java 2. Advanced techniques”, Horstmann, Cornell

Sets – efficiency comparison

• adding elements – add (time in ns)

Size
Implementation

TreeSet HashSet LinkedHashSet

10 746 308 350

100 501 178 270

1 000 714 216 303

10 000 1 975 711 1 615

The anomalies are caused by an error in the test environment – collections were cleared

after every run, not recreated (some collections change their infrastructure)

Sets – efficiency comparison

• Checking elements – contains (time in ns)

Size
Implementation

TreeSet HashSet LinkedHashSet

10 173 91 65

100 264 75 74

1 000 410 110 111

10 000 552 215 256

Taken from „Thinking in Java”, Bruce Eckel

Sets – efficiency comparison

• iteration (time in ns)

Size
Implementation

TreeSet HashSet LinkedHashSet

10 89 94 83

100 68 73 55

1 000 69 72 54

10 000 69 100 58

Taken from „Thinking in Java”, Bruce Eckel

Lists – standard implementation

• ArrayList<E>

• based on array

• get(int), set(int, E), add(E) – O(1)

• add(int, E), remove(Object) – O(N)

 has to move every element

• LinkedList<E>

• based on bidirectional list

• add(E) – O(1)

• get(int), set(int, E) – O(N)

 iterates over every element. If at the end, reverse iterator

• add(int, E), remove(Object) – O(N)

still better than ArrayList<E>

ArrayList<E> - removing element

beginning

element to be removed

size of list

end

ArrayList<E> - optimization

• list has initial capacity

• set in constructor

• when array grows

 a new is allocated, elements are copied

• bigger initial size

• higher memory usage

• rare rewriting

• smaller initial size – the opposite

• ensureCapacity() – changes capacity

 use always before adding much data

 time saving

LinkedList<E> - removing element

NULL p data n p data n p data n NULL

Lists – RandomAccess interface

• marker interface telling, that list has constant access

time

• list should implement this interface if index-access is

faster than iterating

• algorithms should adapt to access time of list

• constant – iterate over indexes

• linear – use iterator

 iterator has pointer to next element in list

 this way we achieve constant access time

Lists - optimization

• adjust implementation to most often used operation

• check if list implements RandomAccess

• if yes

• if no

for (Iterator i = list.iterator(); i.hasNext();) {

 i.next();

}

for (int i = 0, n = list.size(); i < n; i++) {

 list.get(i);

}

Lists - optimization

• do not calculate size in every iteration

• avoid often realocation

ArrayList<String> list = new ArrayList<String>();

list.ensureCapaticy(1024);

// better

ArrayList<String> list = new ArrayList<String>(1024);

for (int i = 0; i < list.size(); i++) {

 list.get(i);

}

// better

for (int i = 0, n = list.size(); i < n; i++) {

 list.get(i);

}

Lists – efficency comparison

• adding elements at the end – add (time in ns)

Size
Implementation

ArrayList LinkedList

10 121 182

100 72 106

1 000 98 133

10 000 122 172

Integer objects were added

Taken from „Thinking in Java”, Bruce Eckel

Lists – efficency comparison

• getting elements from random positions – get (time in

ns)

Size
Implementation

ArrayList LinkedList

10 139 164

100 141 202

1 000 141 1 289

10 000 144 13 648

Integer objects were used

Taken from „Thinking in Java”, Bruce Eckel

Lists – efficency comparison

• changing elements at random positions – set (time in

ns)

Size
Implementation

ArrayList LinkedList

10 191 198

100 191 230

1 000 194 1 353

10 000 190 13 187

Integer objects were used

Taken from „Thinking in Java”, Bruce Eckel

Lists – efficency comparison

• adding in the middle of the list (time in ns)

Size
Implementation

ArrayList LinkedList

10 435 658

100 247 457

1 000 839 430

10 000 6 880 435

Integer objects were used

Taken from „Thinking in Java”, Bruce Eckel

Lists – efficency comparison

• adding at the beginning of the list – add(int, E) (time in

ns)

Size
Implementation

ArrayList LinkedList

10 3 952 366

100 3 934 108

1 000 2 202 136

10 000 14 042 255

Integer objects were used

Elements were added at 5th position.

Added 5000 elements for first three sizes, 500 for fourth

Taken from „Thinking in Java”, Bruce Eckel

Lists – efficency comparison

• removing from beginnig – remove(int, E) (time in ns)

Size
Implementation

ArrayList LinkedList

10 466 262

100 296 201

1 000 923 239

10 000 7 333 239

Integer objects were used

Repeated till size of list greater than 5

Taken from „Thinking in Java”, Bruce Eckel

Maps – standard implementations

• HashMap<K,V>

• based on hashtable (for keys)

• optimization through capacity and load factor

• get(Object), put(K, V) – O(1)

• TreeMap<K,V>

• based on binary tree

• ascending order based on natural order or

comparator

• get(Object), put(K, V), remove(Object),

containsKey(Object) – O(log(N))

• can return sections of tree subMap(K, K)

Maps – standard implementations

• LinkedHashMap<K,V>

• like HashMap<K,V> (organization, optimization)

• additionally viewing in insertion order or access order

 contains additional bidirectional list – faster

viewing

 longer time for add and delete

 same search time, still a hash map

Maps – how to build a cache

• LinkedHashMap<K,V> is a ready implementation

• to build a cache

• create a class extending LinkedHashMap<K,V>

• override removeEldestEntry(Map.Entry)

 called automatically on every add

 provides oldest element *

 return true if element should be removed from

cache

 deletion is automatic

private static final int MAX_ENTRIES = 100;

protected boolean removeOldestEntry(Map.Entry oldest) {

 return size() > MAX_ENTRIES

}

Maps - optimization

• load factor and capacity (or expectedMaxSize) for maps

based on hashtable – set in constructor

• map copying techniques

• sometimes a module copies a map only to view it and

discard later changes

 before copying a TreeMap<K,V> change to

LinkedHashMap<K,V>!

 constructor allows copying

 ensured order, without time overhead of binary

tree (O(1) instead of O(log(N)))

Maps - optimization

• If map does not contain null values or you ignore them,

retrieve value immediately

if (map.containsKey(key)) {

 System.out.println(„key: ” + key + „ value: ” + map.get(key));

}

// better

Integer value = map.get(key);

if (value != null) {

 System.out.println(„key: ” + key + „ value: ” + value);

}

Maps - optimization

• Never iterate over keys, always over entrySet()

for (Integer key : map.keySet()) {

 System.out.println(„key: ” + key + „ value: ” + map.get(key));

}

// better

for (Map.Entry<Integer, Integer> entry : map.entrySet()) {

 System.out.println(„key: ” + entry.getKey() + „ value: ”

 + entry.getValue());

}

Maps – NavigableMap<K,V>(Java 6)

• extends SortedMap<K,V>

• allows iterating in both directions

 descendingMap() returns reversed map

 iterating in reverse is slower

• additional methods

 return submaps with indication if upper or lower

boundary is included

 return neares element in map to given key

 return and remove biggest and smallest element

• implemented by TreeMap<K,V>

Maps – efficiency comparison

• adding elements – put(K,V) (time in ns)

Size

Implementation

TreeMap HashMap
Linked-

HashMap

Identity-

HashMap

Week-

HashMap

10 748 281 354 290 146

100 506 179 273 204 126

1 000 771 267 385 508 136

10 000 2 962 1 305 2 787 767 138

Integer objects were used

IdentityHashMap in not of wide use

WeakHashMap – unrealistically good results. Map did not contain references to elements,

was constantly cleared and small

Taken from „Thinking in Java”, Bruce Eckel

Maps – efficiency comparison

• getting elements – get(Object) (time in ns)

Size

Implementation

TreeMap HashMap
Linked-

HashMap

Identity-

HashMap

Week-

HashMap

10 168 76 100 144 146

100 264 70 89 287 126

1 000 450 102 222 336 136

10 000 561 265 341 266 138

Integer objects were used

Taken from „Thinking in Java”, Bruce Eckel

Maps – efficiency comparison

• iterating over entrySet() (time in ns)

Size

Implementation

TreeMap HashMap
Linked-

HashMap

Identity-

HashMap

Week-

HashMap

10 100 93 72 101 151

100 76 73 50 132 117

1 000 78 72 56 77 152

10 000 83 97 56 56 555

Integer objects were used

Taken from „Thinking in Java”, Bruce Eckel

Collections - views

• many collections have methods returning subranges

• List<E> - subList(from, to)

• SortedSet<E> - subSet(from,to), headSet(to),

tailSet(from)

• SortedMap<K,V> - subMap(from,to), headMap(to),

tailMap(from)

• those collections are only views

• underneath the parent collection

• changes in view visible in parent and vice-versa

Collections – views - optimization

• removing elements in range

• much faster solution

• the faster, the more elements are removed

• critically faster for ArrayList<E>

for (int i = from; i < to; i++) {

 list.remove(i);

}

// better

list.subList(from, to).clear();

Arrays

• Array provides fastest data access

• allocates continous amount of memory

• every cell is of same size (simple type or reference)

• cell address = start address + index * cell size

• cannot be resized

• can be copied to bigger array

• ArrayList<E> uses this mechanism underneath

• System.arraycopy – efficient array copying

 copies whole memory fragment

 better than copying in loops

• can contain simple types!

Arrays – helper class Arrays

• similar to collections, array have a helper class

• asList – packs array into List<E>

 constant size!

 changes in list visible in array

• binarySearch

 array has to be sorted

 array will be search in sort order

• copyOf, copyOfRange – copies array or range creating new

array of given size

 System.arraycopy underneath

 Arrays provides the second array to System.arraycopy

 for arrays of objects only references will be copied, not

objects

Arrays – helper class Arrays

• Arrays

• equals – are the arrays equal

 same elements in same order

• fill – an array with given value

• deepEquals/hashCode/toString – for multidimensional

arrays

• hashCode – calculated over content of array

• sort

 for simple types in natural order

 for objects in natural order or using comparator

• toString – content of table as string

Conclusions

• What collection implementations do you know?

• Which collection is best for general purpose?

• What list implementations do you know?

• What map implementations do you know?

• Which map is best for general purpose?

• What are the advantages of arrays over lists?

• What are the advantages of lists over arrays?

