Single-Cycle Architecture

Was,,p ‘SHPL puv §O) FAT ‘24n302]1yd4 12induio)) ..W____
(= W

Data flow

€ Data flow is synchronized with clock (edge)
In sequential systems

State State
element Combinational logic element
1 2

Clock cycle —

> State Combinational logic
element

Architecture Elements - assumptions

€ Program (Instruction) memory:
€ All'instructions & buses are 32-bit wide (4 Bytes)

€ Instruction code is available at Instruction bus after
instruction code is provided at Instruction address bus

= Register PC contains address to instruction

©

©

= Adder operates on 32-bit numbers

Instruction
address —

> PC >
Instruction [>Add Sum

Instruction
memory —

S
S
QVJ
S
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
~
S
2
2
S
@)

Instruction Fetch Block

€ Instruction Fetch operation

©

= PC-write operation is triggered with clock signal

©

¢ PC is incremented by 4 in every clock cycle
€ A sequence of instructions is fetched from memory

>Add

Read

> PC=s address

INSIrUCTioN r—

Instruction
memory

S
O
&
A\
%0}
3
M~
S
N
S
A
@)
83
=
<
N
=
Q
X
g
Q
<
~
N
=
R
S
@)

Register-type Instructions (R-type)

€ R-type instructions perform operation only on
(contents of) internal registers of processor

¢ two source operands (Rr_iRr) are in internal registers

e results is written to the internal register (Rr)

©

€ R-type instruction code is composed of:

€ unique number of instruction type (opcode)

numbers of 3 registers (2x source and 1 result):r, r, r,

©

type of arithmetical or logical operation (func)

©

S
O
&
A\
%0}
3
M~
S
N
S
A
@)
83
=
<
N
=
Q
=
g
Q
<
C
N
=
R
S
@)

opcode I I\ [. func

S
S
{\f’)
s,
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
C
S
2
2
S
@)

Register Direct Addressing

€ (Adresowanie bezposrednie rejestrowe)

©

operand 1
Rr

S

operand 2
Rr,

operand 3
Rr

d

Operands are in internal registers

assembler:

ADD R1,R2,R7
SUB R3,R6,R1
OR R7,R3,R2
AND RO,R2,R5

S
S
QVJ
S
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
~
S
2
2
S
@)

Register File - assumptions

€ Contains 32 registers, each 32-bit wide

€ At register file output provides contents of two registers

addressed by ReadRegister1&2 input numbers

€ Register numbers are 5-bit wide (2° = 32)

€ Writing to a selected internal register requires: the
register number (WriteRegister), data to be written
(WriteData) and operation enable signal (RegWrite)

€ Write operation is synchronized
with the clock signal

J(;

Register
numbers

{ =
R

.

Data { e—

Read
register 1

Read
register 2

Read
data 1

Registers

Write
register

Write
data

Read
data 2

> Data

RegWrite

Register File — Logical Concept

Read
Reg.1

U

Write
Data RO RT i R31
RegWrite = ,
= W
= W U
D Read
ﬁ Reg.2
Write ©lk

Register

ALU - assumptions

©
QO

2-bit input & outputs (32-bit ALU)
perations: add, subtract, logical: AND, OR
-bit ALU-control bus

nly one output control signal: Zero (£)

©

©
O <« O

©

ALU control

=
O
&
A\
%0}
3
M~
S
N
S
A
@)
83
=
<
N
=
Q
=
=
Q
<
~
N
=
R
S
@)

R-type Instruction Execution

€ Source operands from Register File (Rr_i Rr) are
selected by register numbers from instruction code

€ ALU result is written back to the register selected by
Rr. at the end of clock signal cycle

Instruction

instruction fields
bit numbers

ALU operation

Read
register 1 thea,Id
Read ata
register 2
~ Registers

Write result
register d;gazd

,| Write
data

RegWrite
opcode I I d . func
31 26 | 25 2120 16|15 11 | |5 0

S
S
QVJ
S
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
~
S
2
2
S
@)

Data Memory - assumptions

€ Contains data of the program, organized in 32-bit words (4B)

€ Data is present at ReadData bus after the address is provided at
Address bus and operation enable signal is active (MemRead)

€ Memory modification requires the data and address to be present
at WriteData and Address buses and operation enable signal
active (MemWrite)

| MemWrite

€ Write operation is synchronized
with the clock signal

—| Address Read
data

Write Data
data memory

MemRead

Sign Extension Unit - assumptions

€ Performs conversion of 16-bit binary numbers to 32-
bit representation with proper sign handling (2C)

€ Combinatorial logic, no clock signal required

Plw/L
=
)

QVJ
S
)
3
B~
S
NG
S
9
Q
&
=
}
b
=
Q
S
=
Q
AN
~
S
S
2,
S
Q

Transfer Instructions (Load/Store)

€ Instructions perform data transfer:
€ from data memory to internal register (Load)
€ from internal register to data memory (Store)
¢ transfer info: internal register (Rr) & memory address (Rr,)
€ constant value (offset) extends addressing range
€ Load/Store instruction code is composed of:

©

unique number of instruction type (opcode)

©

numbers of two internal registers: r_, r.

€ constant (offset), added to the memory (base) address

S
S
QVJ
S
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
~
S
2
2
S
@)

opcode I I\ offset

o)

]

L
€

e

Register Indirect Addressing

©

= with Offset (Adresowanie posrednie rejestrowe z przesunieciem)

©

= Offset is a signed number in 2's complement
STORE 4B words 0

data

©

Rr

t

address
Rr >

S

+ offset

sassalppe Alowasw

v v

assembler: (SW — Store Word) > data
operand address

S
S
{\f’)
S
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
~
S
2
2
S
@)

SW R7, (RS)
SW R1,0x200 (R2)

¥n

3

]

L
4

e

Register Indirect Addressing

S
i\ ~
< € with Offset (Adresowanie posrednie rejestrowe z przesunieciem)
2) .
S © Offsetis a signed number in 2's complement
B~
=l <€ LOAD: °
S
8 data _
r <

E T 3
$ address @
§ Rr, > g
Q <
= ©
o= o
S + offset =
g D
N \ &
5 | | S
3 assembler: (LW — Load Word) > —
§ operand address
S LW R7, (R5)

LW R1,0x200 (R2)

¥n

Load/Store Execution

¢ Register Rr_+ offset points to memory data (Load/Store)

¢ Store: Contents of register Rr, (memory input) to be written
(signal MemWrite active)

¢ Load: memory output to be written to register Rr,
(signals MemRead and RegWrite active)

Read 3] ALU operation
register | Read MemWrite
Instruction register 2 - 7Zero >
. Registers > ALU
e result »| Address %Z?g

S
O
&
A\
%0}
3
M~
S
N
S
A
@)
83
=
<
N
=
Q
X
=
Q
<
~
N
=
R
S
@)

register Read
. data 2 g /
Write
> Data
data | memory
RegWrite ’ \é\gt';e
16 , 32
\,| Sign MemRead
N Tl extend

Jump/Branch Instructions

€ Jump/Branch: interruption in execution of a sequence
of consecutive instructions in memory

€ Every Jump/Branch is a modification of the PC register
€ Absolute (jumps) vs Relative (branches)

€ absolute — arbitrary new content loaded into PC
€ relative — offset added to the current value of PC

€ Unconditional vs Conditional
€ unconditional — jump is always performed

€ conditional — final modification of PC depends on conditions
usually provided by ALU (bits C,V,Z,N)

S
S
QVJ
S
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
~
S
2
2
S
@)

S
O
&
A\
%0}
3
M~
S
N
S
A
@)
83
=
<
N
=
Q
=
g
Q
<
C
N
=
R
S
@)

Relative Conditional Branch (BEQ)

€ BEQ Rx,Ry,offset (Branchif Equal)
— branch to address PC+offset*4 if Rx=Ry (Z=1)

€ Instructions are 4B long, so branch range can be
widened by pointing to every fourth byte (offset*4)

€ BEQ instruction code is composed of:

€ unique number of instruction type (opcode)
¢ numbers of two internal registers: r, ,

€ constant (offset), added to the memory (base) address
€ BEQ base address refers to instruction memory

opcode I I\ offset

S
O
&
A\
%0}
3
M~
S
N
S
A
@)
83
=
<
N
=
Q
X
=
Q
<
~
N
=
R
S
@)

Relative Conditional Branch (BEQ)

Instruction ‘

PC + 4 from instruction datapath s

> Add Sum Branch target

ALU operation

v

To branch

>ALU Zero :
control logic

Read
register 1 Read
Read data 1
register 2
Registers
Write
register Read
Write data 2
data
RegWrite
16 _ 32
\ | Sign
N “lextend

assembler: (BEQ)

BEQ R1,R2,0x40
BEQ RO,R7,0xFF

R-type and Load/Store Together

€ Bus multiplexers:

€ ALUSrc: selects the second ALU operand
€ MemtoReg: selects the data to be written to a register

34 ALU operation

Read
register 1 Read | MemWrite
. data 1 MemtoRe
Read g
Instruction registeg:? » ALUSrc
- degisters Read >
.| VVrite data 2 Address Read
register M data M
u
i u
:h;r;;e * Data X
i . memory
i Write
RegWrite o e
16
\
K MemRead

Fetch Unit + R-type, Load/Store

S

N\
(\f’)

Xt

%) .

3

————-

M~

N Add

S >

S 4 —

&

3 o 1Reg;$ters 3| ALY operation MemWrite

5 Lpdl,|Read register .

™~ address Read cd MemtoReg

- register2 data 1| A} ysre

\Y) Instruction :

~ Write Read Address Readl_
~§ register data 2 M data M

Instruction ; v U

% memory —>) ET;E . . Data X
= | Write Memory

}\J RegWra’teI | data

Tf 1\6 _ Stignd 32 MemRead

™ exten

>

2.

:

O

Fetch + R-type, Load/Store and Branch
€ Multiplexer: PCSrc

€ selects the source for new PC value:
PC+4 or PC+offset*4

PCSra

>Add E
4 =t >Addra‘:|.lilt

-
Registers
Read

i ALUSr
PC Rde{?d register 1 Read | c
address Read data 1 ”
register 2
Instruction)

WFEFE Read Address Read p—-
. register data 2 data M
Instruction : U
memory E‘;ﬂ{‘;ﬂ Data X

Write Memory

RegWrite] data
16 Sian 32
a extgnd MemRead

3] ALU operation

| MemWrite

MemtoReg

o=

S
)
&
=
%)
3
M~
S
~
S
%)
@)
=
=
<
~
S
Q
2
g
Q
g
C
N
2
2,
5
@)

S
S
QVJ
S
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
~
S
2
2
S
@)

Write to Register - correction

€ Multiplexer: RegDst

€ selects the correct register number to be modified:
(R-type —r, Load —r)

PCSr

m\ > 1

>Add l ’ !

AL 0

0

4wy > Add result
RegWrite »
|
Instruction [25-21] | Read
Read register 1 Read MemWrite
- PCre> address Instruction [20-16] | Read data 1 ALUSrc 5 MemtoReg
Instruction register 2 Zero
b (1 . Read) DAL ALU Read
M Write data 2 result Address N30y (1
Instruct _ u register M data M
nstruction Instruction [15-11] | x Write u u
memory ¢ 10| ™ldata Registers | S X
Write Data 0
RegDst . . data memory
Instruction [15-0] 1\6 Sign | 32 7\ | E

™ extend
Instruction [5-0]

ALUOp

Control Block

€ Control: combinatorial logic generating all control signal

N
e
=
Xt
%)
O (0
o) y
B~ \ > u
x
S > ALU
Add 1
= result :
G >Add i PCS
o | PCSrc
/" _| RegDst =
7\ Reg . -
{) 4 > f Y Branch Jreeel
I."H | MemRead S
Q Instruction [31-26] | | MemloReg
k‘ * LONrol I ALUOP
~ \ | MemWrite
N \ / ALUSrc
b \ / RegWrite
_ /. RegWrte
= 1
“3 Instruction [25-21] Read
Read ™ register 1
QO PC "| address Read
= Instruction [20-16 data 1
Read
~ 2 > - Zeropb—
Ny ; register 2 ~ETC
S Insi?:;cﬁgi\ L—» 0 _ Registers Read D >ALLF ALU Read
g . M Write data 2 result »| Address cadl__,fy
Instruction register M data
w: u M
memory Instruction [15-11] | X - J u
o | Write X
y I o |l
& ! ,| Write v
~ data
/N
Y Instruction [15-0 16)32 /\]
[] - S|gn \ / \\I i
S N Tlextend | [aLu |
S | control |
- Instruction [5-0] N\ /
N

Absolute Unconditional Jump (JMP)

©

= New, arbitrary value loaded into PC
= No conditions checked

©

©

= Jump address multiplied by 4 — to extend jump range

©

= Missing 4 MSB bits complemented from current PC
value (jJump within a "memory segment”)

€ Multiplexer Jump:

€ selects the source of the next instruction address

opcode jump address (26 bits)

S
O
&
A\
%0}
3
M~
S
N
S
A
@)
83
=
<
N
=
Q
X
g
Q
<
~
N
=
R
S
@)

all assumptions made just for the purpose of this project, in order to keep
the design simple and have all instructions of the same 32-bit size

S
S
{\f’)
s,
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
C
S
2
2
S
@)

Complete Single-Cycle Architecture

PC

/

Instruction [25-0] \ @\

Jump address [31-0]

\ AY
26 @23

PC+4 [31-28]

Add

N

.| Read

address

Instruction
[31-0]
Instruction
memory

Opcode
Instruction [31-26]

Instruction [25-21]

Control

Jump

\ Branch

>Add

ALU
result

x=z ©

MemRead

v
Y

C oxeZ -

MemtoReg

ALUOp

/ MemWrite

/ ALUSrc

RegWrite

Read

Instruction [20-16]

register 1

Read

L.

Instruction [15-11]

register 2

Write
register

Write

“xc2 @

Instruction [15-0]

data

Read
data 1

Registers Rgad

data 2

AN

T

Instruction [5-0]

Sign
extend

Address

Write

"1 data

Read
data

Data
memory

Cxgz

Implemented Instruction Set

€ Register (R-type)

opcode I r\ [func
€ Load
opcode I I\ offset
€ Store
opcode I I\ offset
€ BEQ
opcode I I\ offset
€ JMP

opcode jump address (26 bits)

ALU Control

€ All R-type instructions have identical opcode field,
but differ in Func field (type of operation for ALU)

€ Main control block receives only instruction opcode
and generates signal ALUop (the same for all R-types)

€ ALU Control Unit takes into account
Func field (only for R-types)
and provides direct
control for ALU

= ALUop signal indicates
instruction family, but not
the actual operation

©

S
S
QVJ
S
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
~
S
2
2
S
@)

ALU Control

S

Q
&

%

- Qpcode

8 Func ALU Operation Instruction [31-26] | control o

o) (Neg.+Oper)

~ AND 000
= OR 001

S ADD 010

Instruction [5-0]

8 SUB 1 1 0 Func
S

=

S

§ Negation Operation))

Rl 00000000 e Caryn | ALU operation (3-bits)
& I i

. . . A

§ » / 0 a ---‘P\

<t Ny ‘ — Zero
X L > Resul >ALL:—> Result
§ W R ! — Overflow

b= 0 + 2

N = _/ b —>

S 1

)

= CarryOut

ALU Control - Summary

€ ALU Control is a combinatorial logic — operation can
be described by truth table

Opcode | ALUOp operation Func field | ALU action | ALU input
LW 00 load word XOXXXXX add 010
SW 00 store word XXX XX add 010
BEQ 01 branch equal XXXXXX subtract 110

R-type 10 ADD 100000 add 010

R-type 10 SUB 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001
Jump XX X XX XXX X X XXX

S
O
&
A\
%0}
3
M~
S
N
S
A
@)
83
=
<
N
=
Q
X
g
Q
<
~
N
=
R
S
@)

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30

