Single-Cycle Architecture
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Data flow

€ Data flow is synchronized with clock (edge)
In sequential systems

State State
element Combinational logic element
1 2

Clock cycle —

> State Combinational logic
element




Architecture Elements - assumptions

€ Program (Instruction) memory:
€ All'instructions & buses are 32-bit wide (4 Bytes)

€ Instruction code is available at Instruction bus after
instruction code is provided at Instruction address bus

= Register PC contains address to instruction

©

©

= Adder operates on 32-bit numbers

Instruction
address —

> PC >
Instruction [ >Add Sum

Instruction
memory —
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Instruction Fetch Block

€ Instruction Fetch operation

©

= PC-write operation is triggered with clock signal

©

¢ PC is incremented by 4 in every clock cycle
€ A sequence of instructions is fetched from memory

>Add

Read

> PC=s address

INSIrUCTioN r—

Instruction
memory
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Register-type Instructions (R-type)

€ R-type instructions perform operation only on
(contents of) internal registers of processor

¢ two source operands (Rr_iRr) are in internal registers

e results is written to the internal register (Rr )

©

€ R-type instruction code is composed of:

€ unique number of instruction type (opcode)

numbers of 3 registers (2x source and 1 result):r, r, r,

©

type of arithmetical or logical operation (func)

©
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opcode I I\ [ . func




S
S
{\f’)
s,
%)
3
B~
S
<
S
%)
@)
K
=
<
b
=
Q
2
=
S
NG
C
S
2
2
S
@)

Register Direct Addressing

€ (Adresowanie bezposrednie rejestrowe)

©

operand 1
Rr

S

operand 2
Rr,

operand 3
Rr

d

Operands are in internal registers

assembler:

ADD R1,R2,R7
SUB R3,R6,R1
OR R7,R3,R2
AND RO,R2,R5
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Register File - assumptions

€ Contains 32 registers, each 32-bit wide

€ At register file output provides contents of two registers

addressed by ReadRegister1&2 input numbers

€ Register numbers are 5-bit wide (2° = 32)

€ Writing to a selected internal register requires: the
register number (WriteRegister), data to be written
(WriteData) and operation enable signal (RegWrite)

€ Write operation is synchronized
with the clock signal

J(;

Register
numbers

{ =
R

.

Data { e—

Read
register 1

Read
register 2

Read
data 1

Registers

Write
register

Write
data

Read
data 2

> Data

RegWrite



Register File — Logical Concept

Read
Reg.1

U

Write
Data RO RT i R31
RegWrite = ,
= W
= W U
D Read
ﬁ Reg.2
Write ©lk

Register




ALU - assumptions

©
QO

2-bit input & outputs (32-bit ALU)
perations: add, subtract, logical: AND, OR
-bit ALU-control bus

nly one output control signal: Zero (£)

©

©
O <« O

©

ALU control
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R-type Instruction Execution

€ Source operands from Register File (Rr_i Rr) are
selected by register numbers from instruction code

€ ALU result is written back to the register selected by
Rr. at the end of clock signal cycle

Instruction

instruction fields
bit numbers

ALU operation

Read
register 1 thea,Id
Read ata
register 2
~ Registers

Write result
register d;gazd

,| Write
data

RegWrite
opcode I I d . func
31 26 | 25 2120 16|15 11 | |5 0
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Data Memory - assumptions

€ Contains data of the program, organized in 32-bit words (4B)

€ Data is present at ReadData bus after the address is provided at
Address bus and operation enable signal is active (MemRead)

€ Memory modification requires the data and address to be present
at WriteData and Address buses and operation enable signal
active (MemWrite)

| MemWrite

€ Write operation is synchronized
with the clock signal

—| Address Read
data

Write Data
data memory

MemRead



Sign Extension Unit - assumptions

€ Performs conversion of 16-bit binary numbers to 32-
bit representation with proper sign handling (2C)

€ Combinatorial logic, no clock signal required
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Transfer Instructions (Load/Store)

€ Instructions perform data transfer:
€ from data memory to internal register (Load)
€ from internal register to data memory (Store)
¢ transfer info: internal register (Rr ) & memory address (Rr,)
€ constant value (offset) extends addressing range
€ Load/Store instruction code is composed of:

©

unique number of instruction type (opcode)

©

numbers of two internal registers: r_, r.

€ constant (offset), added to the memory (base) address
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opcode I I\ offset
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Register Indirect Addressing

©

= with Offset (Adresowanie posrednie rejestrowe z przesunieciem)

©

= Offset is a signed number in 2's complement
STORE 4B words 0

data

©

Rr

t

address
Rr >

S

+ offset

sassalppe Alowasw

v v

assembler: (SW — Store Word) > data
operand address
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SW R7, (RS)
SW R1,0x200 (R2)

¥n
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Register Indirect Addressing

S
i\ ~
< € with Offset (Adresowanie posrednie rejestrowe z przesunieciem)
2) .
S © Offsetis a signed number in 2's complement
B~
=l <€ LOAD: °
S
8 data _
r <

E T 3
$ address @
§ Rr, > g
Q <
= ©
o= o
S + offset =
g D
N \ &
5 | | S
3 assembler: (LW — Load Word) > —
§ operand address
S LW R7, (R5)

LW R1,0x200 (R2)

¥n




Load/Store Execution

¢ Register Rr_+ offset points to memory data (Load/Store)

¢ Store: Contents of register Rr, (memory input) to be written
(signal MemWrite active)

¢ Load: memory output to be written to register Rr,
(signals MemRead and RegWrite active)

Read 3] ALU operation
register | Read MemWrite
Instruction register 2 - 7Zero >
. Registers > ALU
e result »| Address %Z?g
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register Read
. data 2 g /
Write
> Data
data | memory
RegWrite ’ \é\gt';e
16 , 32
\,| Sign MemRead
N Tl extend




Jump/Branch Instructions

€ Jump/Branch: interruption in execution of a sequence
of consecutive instructions in memory

€ Every Jump/Branch is a modification of the PC register
€ Absolute (jumps) vs Relative (branches)

€ absolute — arbitrary new content loaded into PC
€ relative — offset added to the current value of PC

€ Unconditional vs Conditional
€ unconditional — jump is always performed

€ conditional — final modification of PC depends on conditions
usually provided by ALU (bits C,V,Z,N)
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Relative Conditional Branch (BEQ)

€ BEQ Rx,Ry,offset (Branchif Equal)
— branch to address PC+offset*4 if Rx=Ry (Z=1)

€ Instructions are 4B long, so branch range can be
widened by pointing to every fourth byte (offset*4)

€ BEQ instruction code is composed of:

€ unique number of instruction type (opcode)
¢ numbers of two internal registers: r, ,

€ constant (offset), added to the memory (base) address
€ BEQ base address refers to instruction memory

opcode I I\ offset
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Relative Conditional Branch (BEQ)

Instruction ‘

PC + 4 from instruction datapath s

> Add Sum Branch target

ALU operation

v

To branch

>ALU Zero :
control logic

Read
register 1 Read
Read data 1
register 2
Registers
Write
register Read
Write data 2
data
RegWrite
16 _ 32
\ | Sign
N “lextend

assembler: (BEQ)

BEQ R1,R2,0x40
BEQ RO,R7,0xFF



R-type and Load/Store Together

€ Bus multiplexers:

€ ALUSrc: selects the second ALU operand
€ MemtoReg: selects the data to be written to a register

34 ALU operation

Read
register 1 Read | MemWrite
. data 1 MemtoRe
Read g
Instruction registeg:? » ALUSrc
- degisters Read >
.| VVrite data 2 Address Read
register M data M
u
i u
:h;r;;e * Data X
i . memory
i Write
RegWrite o e
16
\
K MemRead




Fetch Unit + R-type, Load/Store
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™~ address Read cd MemtoReg

- register2  data 1| A} ysre

\Y) Instruction :

~ Write Read Address Readl_
~§ register data 2 M data M

Instruction ; v U
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Fetch + R-type, Load/Store and Branch
€ Multiplexer: PCSrc

€ selects the source for new PC value:
PC+4 or PC+offset*4

PCSra

>Add E
4 =t >Addra‘:|.lilt

-
Registers
Read

i ALUSr
PC Rde{?d register 1 Read | c
address Read data 1 ”
register 2
Instruction )

WFEFE Read Address Read p—-
. register  data 2 data M
Instruction : U
memory E‘;ﬂ{‘;ﬂ Data X

Write Memory

RegWrite] data
16 Sian 32
a extgnd MemRead

3] ALU operation

| MemWrite

MemtoReg
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Write to Register - correction

€ Multiplexer: RegDst

€ selects the correct register number to be modified:
(R-type —r, Load —r)

PCSr

m\ > 1

>Add l ’ !

AL 0

0

4wy > Add result
RegWrite »
|
Instruction [25-21] | Read
Read register 1 Read MemWrite
- PCre> address Instruction [20-16] | Read data 1 ALUSrc 5 MemtoReg
Instruction register 2 Zero
b (1 . Read ) DAL ALU Read
M Write data 2 result Address N30y ( 1
Instruct _ u register M data M
nstruction Instruction [15-11] | x Write u u
memory ¢ 10| ™ldata  Registers | S X
Write Data 0
RegDst . . data memory
Instruction [15-0] 1\6 Sign | 32 7\ | E

™ extend
Instruction [5-0]

ALUOp




Control Block

€ Control: combinatorial logic generating all control signal
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= result :
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7\ Reg . -
{ ) 4 > f Y Branch Jreeel
I."H | MemRead S
Q Instruction [31-26] | | MemloReg
k‘ * LONrol I ALUOP
~ \ | MemWrite
N \ / ALUSrc
b \ / RegWrite
\_ /. RegWrte
= 1
“3 Instruction [25-21] Read
Read ™ register 1
QO PC "| address Read
= Instruction [20-16 data 1
Read
~ 2 > - Zeropb—
Ny ; register 2 ~ETC
S Insi?:;cﬁgi\ L—» 0 _ Registers Read D >ALLF ALU Read
g . M Write data 2 result »| Address cadl__,fy
Instruction register M data
w: u M
memory Instruction [15-11] | X - J u
o | Write X
y I o |l
& ! ,| Write v
~ data
/N
Y Instruction [15-0 16 )32 /\ ]
[ ] - S|gn \ / \\I i
S N Tlextend | [ aLu |
S | control |
- Instruction [5-0] N\ /
N




Absolute Unconditional Jump (JMP)

©

= New, arbitrary value loaded into PC
= No conditions checked

©

©

= Jump address multiplied by 4 — to extend jump range

©

= Missing 4 MSB bits complemented from current PC
value (jJump within a "memory segment”)

€ Multiplexer Jump:

€ selects the source of the next instruction address

opcode jump address (26 bits)
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all assumptions made just for the purpose of this project, in order to keep
the design simple and have all instructions of the same 32-bit size
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Complete Single-Cycle Architecture

PC

/

Instruction [25-0] \ @\

Jump address [31-0]

\ AY
26 @23

PC+4 [31-28]

Add

N

.| Read

address

Instruction
[31-0]
Instruction
memory

Opcode
Instruction [31-26]

Instruction [25-21]

Control

Jump

\ Branch

>Add

ALU
result

x=z ©

MemRead

v
Y

C oxeZ -

MemtoReg

ALUOp

/ MemWrite

/ ALUSrc

RegWrite

Read

Instruction [20-16]

register 1

Read

L.

Instruction [15-11]

register 2

Write
register

Write

“xc2 @

Instruction [15-0]

data

Read
data 1

Registers Rgad

data 2

AN

T

Instruction [5-0]

Sign
extend

Address

Write

"1 data

Read
data

Data
memory

Cxgz




Implemented Instruction Set

€ Register (R-type)

opcode I r\ [ func
€ Load
opcode I I\ offset
€ Store
opcode I I\ offset
€ BEQ
opcode I I\ offset
€ JMP

opcode jump address (26 bits)




ALU Control

€ All R-type instructions have identical opcode field,
but differ in Func field (type of operation for ALU)

€ Main control block receives only instruction opcode
and generates signal ALUop (the same for all R-types)

€ ALU Control Unit takes into account
Func field (only for R-types)
and provides direct
control for ALU

= ALUop signal indicates
instruction family, but not
the actual operation

©
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ALU Control

S

Q
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%

- Qpcode

8 Func ALU Operation Instruction [31-26] | control o

o) (Neg.+Oper)

~ AND 000
= OR 001

S ADD 010

Instruction [5-0]

8 SUB 1 1 0 Func
S

=

S

§ Negation Operation ) )

Rl 00000000 e Caryn | ALU operation (3-bits)
& I i

. . . A

§ » / 0 a ---‘P\

<t Ny ‘ — Zero
X L > Resul >ALL:—> Result
§ W R ! — Overflow

b= 0 + 2

N = _/ b —>

S 1

)

= CarryOut




ALU Control - Summary

€ ALU Control is a combinatorial logic — operation can
be described by truth table

Opcode | ALUOp operation Func field | ALU action | ALU input
LW 00 load word XOXXXXX add 010
SW 00 store word XXX XX add 010
BEQ 01 branch equal XXXXXX subtract 110

R-type 10 ADD 100000 add 010

R-type 10 SUB 100010 subtract 110

R-type 10 AND 100100 and 000

R-type 10 OR 100101 or 001
Jump XX X XX XXX X X XXX
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