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Gap between the memory and microprocessor speed

 18 months to double the  microprocessor performance
 Several years to double the memory performance (speed/size)

 Memory access time - describes the speed of data transfer 
between memory and microprocessor

 Memory cycle time - describes how often the memory access 
can be repeated

 SRAM – bistable flip-flop or latch, no need to refresh, short access time,
more board space, low retain power/ high write power, 
more heat dissipation, high cost

 DRAM - charge in capacitor, need to refresh, long access time
little board space, low power heat, low cost-per-size



Memory - the performance bottleneck 

Solutions:
1) Memory fast enough (SRAM) to respond to every memory access 

request

2) Slow memory system (DRAM) with transfer improvements: 
wide buses and serial accesses

3) Combination of fast and slow memory systems, arranged so that 
the fast one is used more often then the slow one

Register − < 0.5ns
Cache L1 on-chip − 0.5ns
Cache L2 on-chip − 2ns
Cache L3 off-chip − 10ns
Memory DRAM − 30-70ns
Flash SSD − μs
Magnetic HDD − ms



High performance memory system

Hierarchical organization:
Upper level is faster

Lower level is bigger

Upper level is subset of lower level

Program performance will strongly depend 
on code structure of program and size of data structures

CPU

L1

L2

...

Main system memory

Increasing distance
from CPU in 
access time

Size of memory at each level

Mass storage memory



Cache principle – Reading from memory

uP Cache Mem
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on-chip
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Data not found in cache → transfer from memory (slow) to both μP and Cache

uP Cache Mem

address

data

hit
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Data found in cache (hit)→ transfer from Cache (fast) to μP

XX

X

Hit rate - fraction of accesses 
to cache memory in the total 
number of all memory accesses



Cache principle – Writing to memory

uP Cache Mem
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Write-through → transfer to both: memory (slow) and Cache
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the memory will be updated when this cache location is claimed by other data
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Principles of locality

Temporal locality (locality in time)
if an item was referenced, it will be referenced again soon

(e.g. cyclical execution in loops)

Spatial locality (locality in space)
if an item was referenced, items close to it will be referenced too

(the very nature of every program - serial stream of instructions)



Line 0
Line 1
Line 2
Line 3
etc...

Cache
Main memory

The principle of locality is valid either for instructions or for data,
but there is no locality relation between demand for the both.

It is highly recommended to have two independent caches
(Harvard Memory Architecture)

Cache Organization



double A[row][col];

for (i = 0; i < row; i++)
for (j = 0; j < col; j++)

sum = sum + A(i,j);

Non unit-stride loopUnit-stride loop

Hit rate may depend on the way of accessing the data from memory,
unit-stride access will be preferred for maximal hit-rate

for (i = 1; i < 100000; i++)
sum = sum + A(i);

Unit-stride loop Non unit-stride loop

for (i = 1; i < 100000; i += 8)
sum = sum + A(i);

Cache and data structures access

double A[row][col];

for (i = 0; i < col; i++)
for (j = 0; j < raw; j++)

sum = sum + A(i,j);



Line 0
Line 1
Line 2
Line 3

tag
tag
tag
tag

Direct-Mapped Cache

Tag – (most sign. part of address) identifies the memory block the data comes from
Index – (mid. part of address) identifies line numbers within cache (and block)
Offset - (least sign. part of address) identifies the byte (word) within a cache line

tag index offsetmemory address →



Tag Index Offset

V    Tag                 Data

compare

Address from CPUHit ? Data

V (1 bit) - indicates the validity
of the cache line

Direct-Mapped Cache – hit signal



When alternating memory references point to the same cache line,
the cache entry is frequently replaced, lowering the performance.

Direct-Mapped Cache offers no benefits in case of cache thrashing.

Example: 4KB direct-mapped cache

float A[1024], B[1024];
…
for (i = 0; i < 1024; i++)

A(i) = A(i) * B(i);

The arrays’ size coincide with
the cache size. The same 
elements from A and B will
occupy exactly the same 
cache lines, causing repeated
cache misses

Cache thrashing 



The key to performance increase (and trashing reduction) is
the more flexible placement of memory blocks by combining
several direct-mapped caches.

Block     Tag     Data

0
1
2
3

One-way set-associative
(direct-mapped)

Block     Tag     Data   Tag    Data

0
1
2
3

Two-way set-associative

The degree of associativity reduces the miss rate, at the cost of
increase in the  hit time and hardware complexity

Set-Associative Cache
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Set-Associative Cache : four-way



Tag     Data   Tag    Data   Tag     Data   Tag    Data    Tag    DataAddress

Fully Associative Cache

 The memory block can be placed in any cache line
 Slower access - complicated internal circuitry
 Demand on board space - each cache entry has a comparator
 Memory needed for tags increases with associativity

 Algorithm to choose which block to replace
 LRU (Least Recently Used) - requires additional bits 

for each cache line, updated during each access
 Random - candidates are selected randomly



Idea: transfer the data to cache before the processor needs it,
so that the cache-fill time will be hidden
Cache-fill time can be hidden and hopefully all memory 
references will operate at full cache speed.

 Prefetching - method of loading cache memory 
supported by some processors by implementing a new instruction.

 Prefetch instruction operates like any other instruction, 
except that processor doesn’t have to wait for the result

 Compilers can generate prefetch instructions when detects data access 
using a fixed stride

for (i = 0; i < n; i +=8 )
{

PREFETCH( A(i + 8) )
for (j = 0; j < 8; j++)

sum = sum + A(i+j);
}

Software managed caches



Ability of out-of-order and parallel execution gives the possibility
to compensate for slow memory latency

LOADI R6, 1000 set iterations
LOADI R5, 0 set index

LOOP LOAD R1, R2(R5) load from memory
INCR R1
STORE R1, R3(R5) save in memory
INCR R5
COMPARE R5, R6 check termination
BLT LOOP branch if R5<R6

Several load/store instructions can be initiated without 
absolute stalling the program execution

Post-RISC effects on memory access
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Wide memory systems
- high bandwidth
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Improving memory performance - overview

Two main obstacles:
 Bandwidth - best possible steady-state transfer rate

(usually when running a long unit-stride loop)
 Latency - the worst-case delay during single memory access
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