
Cache Memory

Gap between the memory and microprocessor speed

 18 months to double the microprocessor performance
 Several years to double the memory performance (speed/size)

 Memory access time - describes the speed of data transfer
between memory and microprocessor

 Memory cycle time - describes how often the memory access
can be repeated

 SRAM – bistable flip-flop or latch, no need to refresh, short access time,
more board space, low retain power/ high write power,
more heat dissipation, high cost

 DRAM - charge in capacitor, need to refresh, long access time
little board space, low power heat, low cost-per-size

Memory - the performance bottleneck

Solutions:
1) Memory fast enough (SRAM) to respond to every memory access

request

2) Slow memory system (DRAM) with transfer improvements:
wide buses and serial accesses

3) Combination of fast and slow memory systems, arranged so that
the fast one is used more often then the slow one

Register − < 0.5ns
Cache L1 on-chip − 0.5ns
Cache L2 on-chip − 2ns
Cache L3 off-chip − 10ns
Memory DRAM − 30-70ns
Flash SSD − μs
Magnetic HDD − ms

High performance memory system

Hierarchical organization:
Upper level is faster

Lower level is bigger

Upper level is subset of lower level

Program performance will strongly depend
on code structure of program and size of data structures

CPU

L1

L2

...

Main system memory

Increasing distance
from CPU in
access time

Size of memory at each level

Mass storage memory

Cache principle – Reading from memory

uP Cache Mem

address

data

on-chip

X

Data not found in cache → transfer from memory (slow) to both μP and Cache

uP Cache Mem

address

data

hit

on-chip

XX

Data found in cache (hit)→ transfer from Cache (fast) to μP

XX

X

Hit rate - fraction of accesses
to cache memory in the total
number of all memory accesses

Cache principle – Writing to memory

uP Cache Mem

address

data

on-chip

Write-through → transfer to both: memory (slow) and Cache

uP Cache Mem

address

data

X

Write-back → transfer to Cache only (fast),
the memory will be updated when this cache location is claimed by other data

X X

X

X

Principles of locality

Temporal locality (locality in time)
if an item was referenced, it will be referenced again soon

(e.g. cyclical execution in loops)

Spatial locality (locality in space)
if an item was referenced, items close to it will be referenced too

(the very nature of every program - serial stream of instructions)

Line 0
Line 1
Line 2
Line 3
etc...

Cache
Main memory

The principle of locality is valid either for instructions or for data,
but there is no locality relation between demand for the both.

It is highly recommended to have two independent caches
(Harvard Memory Architecture)

Cache Organization

double A[row][col];

for (i = 0; i < row; i++)
for (j = 0; j < col; j++)

sum = sum + A(i,j);

Non unit-stride loopUnit-stride loop

Hit rate may depend on the way of accessing the data from memory,
unit-stride access will be preferred for maximal hit-rate

for (i = 1; i < 100000; i++)
sum = sum + A(i);

Unit-stride loop Non unit-stride loop

for (i = 1; i < 100000; i += 8)
sum = sum + A(i);

Cache and data structures access

double A[row][col];

for (i = 0; i < col; i++)
for (j = 0; j < raw; j++)

sum = sum + A(i,j);

Line 0
Line 1
Line 2
Line 3

tag
tag
tag
tag

Direct-Mapped Cache

Tag – (most sign. part of address) identifies the memory block the data comes from
Index – (mid. part of address) identifies line numbers within cache (and block)
Offset - (least sign. part of address) identifies the byte (word) within a cache line

tag index offsetmemory address →

Tag Index Offset

V Tag Data

compare

Address from CPUHit ? Data

V (1 bit) - indicates the validity
of the cache line

Direct-Mapped Cache – hit signal

When alternating memory references point to the same cache line,
the cache entry is frequently replaced, lowering the performance.

Direct-Mapped Cache offers no benefits in case of cache thrashing.

Example: 4KB direct-mapped cache

float A[1024], B[1024];
…
for (i = 0; i < 1024; i++)

A(i) = A(i) * B(i);

The arrays’ size coincide with
the cache size. The same
elements from A and B will
occupy exactly the same
cache lines, causing repeated
cache misses

Cache thrashing

The key to performance increase (and trashing reduction) is
the more flexible placement of memory blocks by combining
several direct-mapped caches.

Block Tag Data

0
1
2
3

One-way set-associative
(direct-mapped)

Block Tag Data Tag Data

0
1
2
3

Two-way set-associative

The degree of associativity reduces the miss rate, at the cost of
increase in the hit time and hardware complexity

Set-Associative Cache

V T D

= = = =

Hit
Data

Set-Associative Cache : four-way

Tag Data Tag Data Tag Data Tag Data Tag DataAddress

Fully Associative Cache

 The memory block can be placed in any cache line
 Slower access - complicated internal circuitry
 Demand on board space - each cache entry has a comparator
 Memory needed for tags increases with associativity

 Algorithm to choose which block to replace
 LRU (Least Recently Used) - requires additional bits

for each cache line, updated during each access
 Random - candidates are selected randomly

Idea: transfer the data to cache before the processor needs it,
so that the cache-fill time will be hidden
Cache-fill time can be hidden and hopefully all memory
references will operate at full cache speed.

 Prefetching - method of loading cache memory
supported by some processors by implementing a new instruction.

 Prefetch instruction operates like any other instruction,
except that processor doesn’t have to wait for the result

 Compilers can generate prefetch instructions when detects data access
using a fixed stride

for (i = 0; i < n; i +=8)
{

PREFETCH(A(i + 8))
for (j = 0; j < 8; j++)

sum = sum + A(i+j);
}

Software managed caches

Ability of out-of-order and parallel execution gives the possibility
to compensate for slow memory latency

LOADI R6, 1000 set iterations
LOADI R5, 0 set index

LOOP LOAD R1, R2(R5) load from memory
INCR R1
STORE R1, R3(R5) save in memory
INCR R5
COMPARE R5, R6 check termination
BLT LOOP branch if R5<R6

Several load/store instructions can be initiated without
absolute stalling the program execution

Post-RISC effects on memory access

CPU

cache

M
ain m

em
ory

32-256

data

address

Wide memory systems
- high bandwidth

CPU

cache
Bank 3

Bank 2

Bank 1

Bank 0

address

data

Interleaved memory systems
- lower latency

Improving memory performance - overview

Two main obstacles:
 Bandwidth - best possible steady-state transfer rate

(usually when running a long unit-stride loop)
 Latency - the worst-case delay during single memory access

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

